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INTRODUCTION

Let V be a vector space over a field K, and let A be a
subalgebra of the ring EndK(V) of K-linear endomorphisms of V.
Associated to A 1is Lat A, the lattice of all A-invariant
subspaces of V. From this, one can construct Alg Lat A, the set
of all T E€ EndK(V) such that T leaves all elements of Lat A
invariant. Alg .Lat A 1s a subalgebra of EndK(V), and it
contains A. We will say that A 1is reflexive if Alg Lat A
= A. This notion was defined by P. R. Halmos [6] in 1971, in the
context of bounded operators on and closed subspaces of a Hilbert
space.

Since then, this idea has been studied extensively by operator
theorists. Generally, they proceed by assuming that an explicit
algebra of linear transformations is given, and by studying Alg Lat
A. Our viewpoint here is to start with an abstractly given alge-
bra and to find the ways in which it can be represented as a con-
crete reflexive algebra of linear transformations. This allows us
to utilize the theory of modules over algebras. For, if a faithful
representation of A on V 1is given, i.e., a monomorphism
f:A - EndK(V) of K-algebras, V <can be viewed as a right
A-module by vea = f(a)(v), for v €V and a € A. V is

furthermore a faithful A-module, which 1is to say, for each nonzero



a € A, there is v € V with va # 0. On the other hand, if
M is a faithful right A-module, we obtain a monomorphism
f:A > EndK(M) by £f(a)(m) = ma. Hence, the image of f 1is an
algebra of k-linear transformations of M, and is isomorphic to
A. We usually assume that M is of finite K-dimension n, and
that a K-basis of M has been selected. Then, we can identify
EndK(M) with the algebra Mn(K) of nxn matrices over
K(n = deg f), and so our faithful modules correspond to faithful
matrix representations.

There are two precedents for this point of view. One is the
work of Deddens and Fillmore [4], where the reflexive representa-
tions of rings of the form E[X]/(X") are calculated implicity.
Their work is phrased in terms of nilpotent transformations, rather
than in terms of algebras, representations and modules. In [3],
Brenner and Butler showed that the direct sum of two copies of the
regular representation of a finite-dimensional algebra is reflexive.
Their motivation was to show that any finite-dimensional algebra is
isomorphic to the endomorphism ring of some module over the
so-called "hollow" triangular matrix algebra of degree six, thus
showing that this algebra is of wild representation type.

In this dissertation, we try to examine the representation-
theoretic aspects of reflexivity. In Chapter 1, we introduce inter-
mediate algebras of a representation, and show how to find their
"Alg Lat." In Chapter 2, we define the p-reflexive extension of an

intermediate algebra B as the set of all A€ Mn(K) such that



M(p)

all B-submodules of are invariant under A, where

M(p) is the direct sum of p copies of M. For every intermedi-
ate algebra B, we define a chain and we show the closedness of
this chain in terms of reflexive extensions of its members. Then,
we define the degree of reflexivity of a representation or module.
Then, we define the degree of reflexivity of a representation of
module. We also consider the commutant of a reflexive extension,
and show that for a semisimple algebra, every double commutant of an
intermediate algebra is also an intermediate algebra.

In Chapter 3, we define p-reflexivity of a representation or
module, by analogy with Azoff's notion [l1] of p-reflexive algebra
and show that p-reflexivity is preserved under isomorphism, so that
we need only consider indecomposable algebras. Finally, we consider
basic serial algebras, which were introduced by Nakayama [l11], and
have been studied by H. Kupisch [8], I. Murase [10], and K. Fuller
[S]. In a block triangular representation of an algebra, we intro-
duce relations that are preserved under reflexive extensions, and
other relations that are not so preserved. We prove a theorem con-
jectured by Professor William H. Gustafson, which gives necessary
and sufficient conditions for a faithful module over a basic indecom-
posable serial algebra A to be reflexive. Namely, if the unique
minimal faithful A-module M 1is decomposable, then every faithful
A-module is reflexive., If M 1is indecomposable, then M@

rP(A)M 1is a reflexive A-module of minimal dimension, where

r(A) 1is the Jacobson radical of A, and n 1is the number of
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simple components of A/r(A). This includes the result of
Deddens and Fillmore, but also much more. In particular, it
includes many noncommutative situations. The method of proof allows
us to determine whether a given matrix representation of a basic
serial algebra is reflexive, by inspection.

(p)

Throughout the text, when B € Mn(K)’ B denotes the
direct sum of p copies of B, and if B 1is a set of matrices
in Mn(K)’ then B(p) = {B(p):B € BY. All algebras are

assocliative with unit and are finite-dimensional over an algebra-

ically closed field K.



CHAPTER 1

INTERMEDIATE ALGEBRAS OF A REPRESENTATION

l1.1. Preliminaries

Suppose that f is a representation of the K-Algebra A,
afforded by the right A-module M =@I11K. For a positive integer

P, M(p) = @;M is a right A-module with f(p) =@;.lf the
(p)

representation it affords. We can also think of M as

a right f(A),[f(A)](p) or A(p)—module, since for
(p)

(ml,...,mp) EM and a € A, we have

(ml,...,mp)a = (m a,...,mpa)

1

(mlf(a),. ..,mpf(a))

f(a) O
= (ml,ooo’m) .'.
0 f(a)
a 0
= (my,,ee0,m ) .. .
1 P 1o a
(p) : ) _ (p)
Lat (f ) 1s the lattice of all A-submodules of M ,
which can also be viewed as the set of all K-subspaces of M(p)
that are invariant under f(a), for all a € A. Whenever we
(p)
write Lat A(p), or Lat[f(A)](p) we mean Lat(f'P Y. 1If

p =1, we omit the superscript (1).

5



1.2. Alg Lat f

Alg Lat f 1is the set of all AEMn(K), such that for all

A-submodules N of M, we have NA < N. Let M* =

* * *
HomK(M,K). For x €M and y €M the element x ® y

*
of M ®K M can be viewed as a K-endomorphism of M by the
* *

*
formula m(x ® y) = (m)x .y. If x and y are nonzero,

this endomorphism has rank one. This construction induces a

n

. . * . .
well-known isomorphism M ®K M EndK(M). Using the duality

*
between M and M define

* * * * *
[y,x ] =Tr(x ® y) =yx , for x € M, y€ M,

*
and using the duality between E = Mn(K) and E =HomK(E,K)

define
% * * *
[[B,LA']] =Tr(A ° B), for A € E and BE E.
* * * *
Since (x ®y) =y ® x (where for x € M, x means the
Fk .
transpose of x and x = x, we can define

* *
R1 = {x*® y:x €M and y € M},

*
which is the set of all operators of rank at most one 1n E .

Lemma 1.2.l: For any x,y € M and B € E we have

([B,x"® yl] = [xB,y 1 .



Proof:

[[B,x"® yI] = Tr((x* ® y)* - B)
Tr((y*® x) ° B)

= Tr(y  ® xB)

*
= [xBy ],
as claimed.

If NS M, we define

* * *
2 .(N) ={x €M :[y,x ] =0 for all y € N},
M

. * *
and if BCE and B < E, we put

* * *
r *(B) ={A € E :[[B,A]] =0,
E
for all B € B},
and

% * *
ZE(B ) ={A€ E:[[A,B ]] =0, for all B € B}.
Now, we prove the following proposition, which we will use later on.

Proposition 1.2.2: Suppose that B 1is a subalgebra of E. Then

Alg Lat(B) = JLE(Rl N rE*(B)).
Proof: For B € Mn(K)’ let K[B] be the subalgebra of E
generated by B and the identity matrix. The result follows
because any two consecutive statements in the following list are
equivalent (the equivalence of i) and ii) follows from Azoff [1];

the rest is evident):



i) B € Alg Lat B;
ii) r (xB)cr +(XK[B]);
M M
* *
1iii) If (xB)y =0, then (xB)y =0 for all X,y € M;
. * *
iv) If (xA)y =0, for all A € B, then (xB)y =0,
for all x,y € M;
* *
v) If [xA,y ] =0, for all A € B, then [xB,y ] = 0,
for all x,y € M;
. *
vi) If [[A,x ®y]] =0, for all A€ B, then [[B,x*®y]]
= 0, for all x,y € M;
vii) If [[A,C]] = 0, for all A € B, then [[B,C]] = 0,
whenever C €Rl;
viii) [[B,C]] =0 for all C€R Nr _(B);
E
ix) BE€L(R N1 (B)).
E
In the complex case, if L 1is the orthocomplement operation

relative to some inner product, we can write the following form of

the proposition above:
1.1
Alg Lat B = (Rl N B ).

This was asserted in [9], but the proof there is not given clearly.
In the sequel, we will sometimes write the formula of Proposition
1.2.2 in this form, for simplicity of notation. The reader should

have no trouble interpreting "L1" as "lE" or "r ,, as

E
appropriate.



1.3. Intermediate Algebras

Let R(1) denote Alg Lat A. By an intermediate algebra for

f, we mean a subalgebra B of Mn(K) that satisfies the

following conditions:
l1. B is a subalgebra of R(1l), and
2. f(A) 1is a subalgebra of B.

Thus we have:
f(A) € B < R(1) = Alg Lat A.

Note that f(A) and R(l) are intermediate algebras of f.
Suppose that XpseoesX is a basis of M affording f. We see
that M 1is also a right R(l)-module. Hence, we have a faithful
matrix representation f of R(1l), which has the following

1

properties:

1. N is an A-submodule of M if and only if it is an

R(1)-submodule of M. That is,
Lat((Rl)) = Lat f(A)) = Lat f

2. fl(A) = A, for all A€ R(1); i.e., f1 is the inclusion

of R(1) 1in Mn(K).

We denote it so elaborately in order to maintain consistency of
notation. Hence, we can identify f with fllf(A)' Let B
be an intermediate algebra of f. Then M 1is a right B-module

with the corresponding representation g = flIB'
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Proposition 1.3.1: Let B be an intermediate algebra of f.

Then Lat(B) = Lat f.

Proof: f(A) € B < R(1) 1implies that Lat(R(l)) c Lat B ¢

Lat f(A), since Lat is order-reversing. Since Lat(R(1l)) =

Lat f(A), it follows that Lat B = Lat f.

As a result of this proposition and (1.2.2), we can state the

following result.

Corollary 1.3.2: Suppose that B 1is an intermediate algebra of

f. Then

R(1) = L(R N rE*(B)).



CHAPTER 2

REFLEXIVE EXTENSIONS

We continue the assumptions we made in Chapter 1. Let B be
an intermediate algebra of f. For a positive integer p, we
define the p-reflexive extension of B as the set of all A
EMn(K) such that all B-submodules of M(p) are A-invariant.

We denote this set by R(B,g,p), where g 1is the restriction

of fl to B. Note that from now on, whenever we write

(p)

R(B,g ,P), we mean that g is the restriction of £, to

1
B. For the sake of simplicity, we write R(B,p) for R(B,g,p)

and R(p) for R(f(A),f,p).

2.1. p-reflexive Extensions

Suppose that B 1is an intermediate algebra of f. Then the
following facts are immediate:
2.1.1 R(B,p) 1is a K-subalgebra of Mn(K).

(p) (p)

2.1.2 R(B,g ,1) = Alg Lat [B] , and

2.1.3 B 1is a subalgebra of R(B,p).
The following lemma leads to a result that shows the

(p)
relationship between R(B,p) and Alg Lat [B] P/

Lemma 2.l1.4: Let B be an intermediate algebra of f, and let

(p)

p be a positive integer. Then any element of R(B,g ,1) has

the form A(p), for some A € Mn(K)'

11
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Proof: Set E =Mn(K). If rER(B,g(p),l), then r€Mp(E),

so let r = (A..), with AijeE” Since M@...@O,...,O@

1]
ees ® M are B-submodules of M(p), we have Aij = 0, for
i # j. Moreover, since N = {(m,...,m):m € M} is a B-submodule
(p) ..
of M , we have mAij = mAjj’ for all 1i,j and m € M.
Thus, Aii = Ajj for all i and j. Setting A = A11 = L. =
A , we have r = A(p).

PP

Proposition 2.1.5: Let B be an intermediate algebra of f, and

let p be a positive integer. Then

r(B,g'P),1) = res,p)) (P,

(p) (p)

,1) 1is the set of all A "7,
(p)

Proof: By Lemma 2.1.4, R(B,g

A€ Mn(K) such that every B-submodule of M is invariant

under A. This is exactly (R(B,p))(p).

The following result immediately from 2.1.5:

(p)

2.1.6 A € R(B,g(p),l) if and only if A € R(B,p).

2.1.7 (R(B,pN P = alg rat ()P, and

(p) (p)

2.1.8 If B cR(p), then Lat[B] = Lat(f) " 7.

The next result will be used to develop some more properties of

reflexive extensions.

Lemma 2.1.9: Suppose that B1 and B2 are intermediate

algebras of f and that p 1is a positive integer. If BIE

B then R(B,,p) S R(B,,p).

2’
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Proof: ]3l c B2 implies Bl(p) c Bz(p). Thus, Alg
(
Lat[Bl p)] c Alg Lat[Bz(p)]. Now by (2.1.7) we have

(R(Bl,p))(p) c (R(Bz,p))(p), which implies R(Bl,p)

< R(B,,p).
Now, we give a characterization of R(B,p).

Proposition 2.1.10: Let B be an intermediate algebra of f and
let p be a positive integer. Then A € R(B,p) if and only if
mA € mB for all m € M(p).

Proof: A € R(B,p) if and only if A(p) € R(B,p)(p). By
[1, 2.4] we have that A(p)€ Alg Lat[B(p)] if and only if

(p)

mA(p) € B(p), for all mé€ M , which means mA € mB

for all m € M(p).

Next, we show a relation between different extensioms of an

intermediate algebra of f.

Lemma 2.1.11: Let B be an intermediate algebra of f and let

p be a positive integer. Then
R(B,p+l) < R(B,p).

Proof: If A € R(B,p+l), then by (2.1.10), (m,0) € (m,0)B

(p).

for all m€ M This means that A € R(B,p).

The following is an immediate result of (2.1.11) which shows

the nested property of reflexive extensions.

Corollary 2.1.12: Let B be an intermediate algebra of f. Then
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Bc ... €R(B,3) < R(B,2) < R(B,1).

2.2. Reflexive Chains

Suppose that B is an intermediate algebra of f. We define

the reflexive chain of B, denoted by ch(B), as follows:
ch(B) = {R(B,p):p = 1,2,...}.

Clearly, B 1is a lower bound of this chain and R(B,l1) 1is the
least upper bound of this chain. Note that R(B,1) € ch(B). We
next show that every reflexive chain has R(1) as its least upper

bound, which is in the chain.

Proposition 2.,2.1l: Let B be an intermediate algebra of f.

Then
R(B,1) = R(1).

Proof: That B 1is an intermediate algebra of f implies that

Lat B = Lat f. Therefore, Alg Lat B = Alg Lat f = R(1l),

whence R(B,1) = R(1).
Now, we can state the following corollary.

Corollary 2.2.2: If B 1is an intermediate algebra of f, then

R(B,p) 1is an intermediate algebra of f, for p =1,2,.... Thus

we have

Bc ... <R(B,3) < R(B,2) <R(B,1) = R(1).
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Next, we show that B € ch(B). This means B = R(B,p),

for some positive integer p.

Proposition 2.2.3: Suppose that B is an intermediate algebra of
f and n = deg f. Then B = R(B,n).

Proof: (€) 1is clear by (2.1.3).

(S): Suppose that X|se++e,% is the basis of M affording f.
We see that (xl,...,xn) € M(n). By (2.1.10), A € R(B,n)
implies that (xl,...,xn)A € (xl,...,xn)B, which implies

that for some B € B, xjA = x.B, for j =1,...,n. Thus, A

J

and B have the same value on a basis of M, which implies A =

B € B.

We see that <ch(B) has at most n distinct elements, where
n = deg f.
The following three lemmas are used to show the closedness

property of ch(B) with respect to reflexive extensions.

Lemma 2.2.4: Let B be an intermediate algebra of f and let p

be a positive integer. Then
R(R(B,p),p) = R(B,p).

Proof: Let C = R(B,p), which by (2.2.2) is an intermediate

algebra of f, and let g be the restriction of f to C. Then
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(p)

(r(c,g,p) 1P = rec,gP) 1) by (2.1.5)

alg Lat[c](P) by (2.1.2)
(p)

Alg Lat[R(B,p)]
(p)

[R(B,p)]
- ¢(P),

by (2.1.7) and [9]

Therefore, [R(C,g,p)(p) = C(p), which implies that R(C,g,p) =

C.

Lemma 2.2.5: Let B be an intermediate algebra of f, and let

P be a positive integer. Then
R(R(B,p),p+l) = R(B,p).

Proof: Set C = R(B,p). Then C < R(C,p+l) and R(C,p+l) <
R(C,p). Thus, C < R(C,p+l1) < R(C,p). But, by (2.2.4), we have

R(C,p) = C.
A simple induction shows

Corollary 2.2.6: Suppose that B 1is an intermediate algebra of

f and that p 1is a positive integer. Then for d = 0,1,2,...,
R(R(B,p),p+d) = R(B,p).

Lemma 2.2.7: Suppose that B 1is an intermediate algebra of f

and that p 1is a positive integer. Then

R(R(B,p+l),p) = R(B,p).



17
Proof: We have R(B,p+l) < R(B,p), which implies that
R(R(B,p+1),p) < R(R(B,p),p); thus, R(R(B,p+l),p)c< R(B,p).
On the other hand, B < R(B,p+l), which implies R(B,p) c

R(R(B,p+1),p).
A simple induction shows

Corollary 2.2.8: Suppose that B 1is an intermediate algebra of
f and that p 1is a positive integer. Then R(R(B,p+d),p) =

R(B,p), for d =0,1,2,....
The following is a clear consequence of (2.2.4)-(2.2.8).

Proposition 2.2.9: Suppose that B 1is an intermediate algebra of

f and that Py and p, are positive integers. Then
R(R(B,p,),p,) = R(B,p),
where p = min(pl,pz).

Therefore, we see that for any intermediate algebra of £, there is
a chain which is closed under reflexive extensions. Suppose that
B is an intermediate algebra of f. Let R(B,p) be the
greatest lower bound of ch(B), which has the property that
R(B,p) # R(B,p-1). Then we call p the degree of reflexivity

of B, and we write

d.r.(B) = p.
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We define

d.r.(f) = d.r.(£(A)).

It is clear that for every intermediate algebra B of £, we

have

d.r.(f) > d.r.(B).

Also, we define
ch(f) = ch(£(A)).

Clearly, ch(f) 1is the largest among all the reflexive chains. The

following proposition shows the relation between <ch(f) and

ch(B).

Proposition 2.2.10: Suppose that B 1s an intermediate algebra
of f and that p 1is a positive integer. Then B < R(p)
implies R(B,p) = R(p).

Proof: We have f(A) €« B < R(p), whence R(f(A),p) < R(B,p)

< R(R(p),p), and so R(p) = R(B,p) = R(p).

2.3. The Commutant

Suppose that B 1is an intermediate algebra of f. Define

B' and B" -as follows:

B' {A € Mn(K):AB BA for all B € B},

AC for all A€ B'}) = (B')'.

B"' {C € Mn(K):CA
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Let Bl, B,, and B be intermediate algebras of f.

Then the following properties are well known and easy to prove.

B < B".
! !
If BISBZ’ then BZSBI'

If B is commutative, then B c B'.

The following result is well known.

Proposition 2.3.1: Suppose that B 1is an intermediate algebra of

f. Then EndB(M) = B'.

Proposition 2.3.2: Let B be an intermediate algebra of f.

Then
R(B,2) < B".

Proof: Given A € R(B,2), we must show A € B". Suppose that
BE€ B'; we show that AB = BA by showing that xAB = xBA, for
all x € M. If A €R(B,2), then mA € mB for all m € M,
whence (x,xB)A = (x,xB)C, for some C € B. This implies that

xA = xC and xBA = xBC. Since B € B' and C € B, we have

xA = xC and xBA xCB for all x € M. Now, we substitute xA
for xC in the equation xBA = xCB. We obtain that xBA = xAB,

for all x € M. Therefore BA = AB, which implies that A € B".

Let B be an intermediate algebra of f. Then the following

are clear consequences of (2.3.2).
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1) R(2) < (£(A))";
ii) If B" 1is an intermediate algebra of f, then d.r.(B")
L2
iii) If B =B', then d.r.(B) < 2;
iv) If M is a balanced B-module, then d.r.(B) £ 2;
v) B"N R(l) 1is an intermediate algebra of f with d.r.(B"
n rR(1)) < 2.

The following proposition gives a condition on B to force

B" to be an intermediate algebra of f.

Proposition 2.3.3: Let B be an intermediate algebra of f. If
M 1is a semisimple B-module, then B" 1is an intermediate
algebra of f£.

Proof: We have to show B" c R(1). Suppose A € B" and let N

be a B-submodule of M. We must show that A(N) < N.

If M is semisimple as a B-module, then N 1is a direct
summand of N. This implies that there is an idempotent element
E € Endg(M) = B' such that N = E(M). That A € B" and
E € B' implies that AE = EA. It is clear that EAM = AEM C M,
whence EEAM c EM, so that EAM c EM, and therefore AEM c EM,
since AE = EA. It follows that A(N) €N, and so A € R(1).

Note that if for some intermediate algebra B, M 1is a

B-semisimple module, then M is C-semisimple for any intermediate

algebra C of f, since Lat f is complemented.



CHAPTER 3

REFLEXIVE REPRESENTATIONS AND MODULES

We continue the assumptions we made in Chapters 1 and 2. 1In
this chapter, we first consider p-reflexivity and the module-
theoretic aspects, and we show that isomorphisms preserve reflexiv-
ity. Also, we show that it suffices to consider indecomposable
algebras. Then we consider a large class of algebras, to wit, basic
serial algebras, and we give a necessary and sufficient condition

for their representations to be reflexive.

3.1. p-reflexivity

In this section we define p-reflexivity and show that this
definition is equivalent with the definition of p-reflexivity in
[1]. Moreover, we look at the module-theoretic aspect of this

notion and also consider some special types of representations.

Definition 3.1.1: Let p be a positive integer. A representation
f of an algebra A is p-reflexive if f(A) = R(p). In this
case we also say that M 1is a p-reflexive A-module. If p =1,

we call f a reflexive representation of A and M 1is a

reflexive A-module.

21
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The following theorem shows that our definition of p-reflexiv-

ity is equivalent to that given in [1], and also explains the

module-theoretic aspect of it.

Theorem 3.1.2: Let f be a faithful representation of the
K-algebra A with deg f = n and corresponding module M. Then
the following statements are equivalent:

i) d.r.(f) < p;

ii) f 1is p-reflexive;
iii) M 1is a p-reflexive A-module;

iv) £(A) = R(p);

v) f(A) is a p-reflexive algebra;

M(p)

vi) is a reflexive A-module.

Proof: (i), (ii), (iii), and (iv) are equivalent, by definition.

(iv)e (v): £(A) = R(p) if and only if [£(a)]'P
[R(p)](p). By (2.1.7), we have [R(p)](p) = Alg Lat
[f(A)](p), which means that [f(A)](p) is a reflexive
algebra, i.e., f(A) 1is a p-reflexive algebra.
(v)e>(vi): f(A) 1is a reflexive algebra if and only if
[f(A)](p) = Alg Lat [f(A)](p) which means M(p) is a
reflexive A-module.
The following are clear consequences of (3.1.2).

(n) . .
Corollary 3.1.3: If deg f = n, then M 1s a reflexive

A-module.

Proof: Use (2.2.3) and (3.1.2).
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Corollary 3.1.4: If M(p) is a reflexive A-module, then

+2) . ]
M(p ) is a reflexive A-module, for £ =0,1,2,...

Proof: ch(f) 1is closed under reflexive extension.

Corollary 3.1.5: Every algebra has a p-reflexive representation,

for p=1,2,... .

In the following we discuss equivalent representations and

isomorphic modules to see that p-reflexivity will be preserved under

A-isomorphism.

Proposition 3.1.6: Suppose that f 1is a faithful representation of

A afforded by the A-modules Mi,i = 1,2, Let f be

1
equivalent to f2. Then f1 is p-reflexive if and only if
f2 is p-reflexive. Consequently, Ml is a p-reflexive module

if and only 1if M2 is a p-reflexive module.
Proof: First consider the case p = l. f1 1s equivalent to

f2 if and only if deg fl deg f2 = n and there is an
invertible matrix T € Mn(K) such that fz(a) = T-lfl(a)T
for all a€A, by [12, p. 8l1]. Therefore, fl(A) is
reflexive if and only if fz(A) is reflexive by [13, p. 178].

(p)
For p > 1, replace f£. by £. P .

i = 1,2 and by the
i 1

same argument as in case p = 1, we obtain the result.
Next we consider a decomposable algebra. Note that A =

A + A means that A is a ring direct sum of Al



Proposition 3.1.7: Suppose that A = A. + A with f =
fl ® f2 where fi is the restriction of f to A , 1 =

1,2. Then f 1is p-reflexive if and only if f and £, are

p-reflexive.

Proof: For p =1, we have Lat f = Lat £, ® Lat £, and

Alg Lat f = Alg Lat f, + Alg Lat £, by [2]. since £(A) =
fl(A) + fz(A), the result is immediate. For p > 1,
replace f by f(p) and fi by fi(p), i =1,2 and by

the same argument as in case p =1, we obtain the result.

Thus from now on we assume A 1is an indecomposable algebra.

Suppose we consider A as a right A-module. Corresponding
to this module there is a faithful representation f of A with
deg £ = dim.KA. We see f 1is 2-reflexive by [3].

Since every homomorphic 1mage of a semisimple algebra is
semisimple, every faithful representation of a semisimple algebra is

reflexive, as has been pointed out in [2].

3.2. On Triangular Representations

Let T(d ”"’dn) denote the set of all matrices with the

1
block form
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where each block Bi is in the set Td (K) of lower

1
triangular di X di matrices over K.

Henceforth, B 1is an intermediate algebra of f contained

in T(dl""’dn)' Let [x] means the least strictly positive
residue of x module dj' For 1 < [s] < [t] -<—dj’ let
B(j,s,t) denote the s,t-entry of B in the j-th block.

Let R denote a relation obtained as follows. First, specify
non-overlapping subsets of indices (row and column designations),
then require all elements of B € Mn(K) with index in a given
subset to be equal. For numbers 1 < il < i2

let R{il, .o ,ik} denote such a relation that involves only the

< i, < m,

blocks B. ,...,B. . B 1is said to satisfy R{i,,...,
1, . 1

ik} provided each B € B satisfies R{il,...,ik}.

R{il,...,ik} is said to be extendible in B if there is a
block 1q such that lq € {11,...,1k} and R{11,...,
1k} is contained in R{11,...,1m,1q}.

Containment has an obvious meaning as follows: relation S

1
contains the relation S2 in case B satisfies S2 whenever
it satisfies Sl'

Proposition (3.2.4), which follows after three lemmas, is help-

ful in determining the reflexivity of triangularizable representa-

tions.
Lemma 3.2.1: For i # j, let R{i,j} be the relation

(e)i,s,t) = (+)(m,s',t'),
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for the set of indices ({(s,t),(s',t')}). Then B satisfies
R{i,3} if and only if Alg Lat B satisfies R{i,j).

Proof: (<) is clear.
(=) Let E(x,y) denote the matrix in Mm(K) (where m = zt]'f dj)’

with x,y-entry equal to 1 and 0's elsewhere. Set

E = E(s,t) + E(s,t') - E(s',t) - E(s',t').

Then E 1is a nonzero element in R1 n B'L, see (1.2.2). 1It
is clear that R(1) ST(dl,...,dn), since Lat B = Lat f.
1

Suppose that B = (B(x,y)) € R(1); then B € E, so
B(s,t) + B(s,t') - B(s',t) - B(s',t') = 0.

Since i # j, we have B(s,t') =B(s',t) =0, whence B(s,t) =

B(s',t').
Lemma 3.2.2: Suppose that R{i,j} 1is the relation
(*)(i,s,t) = (')(j,sh,th), h=1,...,k.

Then B satisfies R{i,j} if and only if Alg Lat B satisfies
R{i,j>.
Proof: (+«) is clear.

(=) For h = 1,...,k, define Rh(i,j) by

(*)(i,s,t) = (')(j,sh,th).
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Then B satisfies R{i,j) if and only if it satisfies Rh{i,j}
for all h =1,...,k. Also, B satisfies Rh{i,j} if and only

if Alg Lat B does, by (3.2.1). Thus, the result follows.
Lemma 3.2.3: Suppose that R{i,j} is the relation

()(i,s0,t0) = (4)(§,s, .t ),

h’th
£ =1,...,k and h = l,...,mj.

Then B satisfies R{i,j} if and only if Alg Lat B satisfies
R{1,j}.
Proof: («) is clear.

(=) For & = l,...,m,, define R {i,j} by

(«)(i,s ) = (+)(,s,,t,), h= 1,...,mj.

2%

Then B satisfies R{i,j) 1if and only if satisfies R {i,j},
for 2 =1,...,m.. Using the same argument as in Lemma 3.2.2, we

J

obtain the result.

Proposition 3.2.4: Let R{il,...,ik} be a relation as above.
Then B satisfies R if and only if Alg Lat B satisfies R.
Proof: (=) is clear.

() B satisfies R 1if and only if B satisfies R{i,j} for
all i,j € {il,...,ik}. By (3.2.3), B satisfies R{i,j) Iif
and only if Alg Lat B satisfies R{i,j}, and the result

follows.
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3.3. Representations of Basic Serial Algebras
By a serial algebra, we mean a finite-dimensional algebra, each
of whose indecomposable projective modules (left and right) has a
unique composition series. The properties of such algebras have
been studied by Kupisch [8], Fuller [5], and Murase [10]. We recall
that over such an algebra A, each indecomposable left module has
the form P/rk(A)P (up to isomorphism), where P 1is an inde-
composable projective left A-module, r(A) 1is the Jacobson
radical of A, and k > 0. We can order the representatives of a
full set of isomorphism classes of indecomposable projective left
A-modules as P,,...,P , with r(A)PJ.+1/r2(A)PJ.+1 =

Pj/r(A)Pj, for j =1,...,n, and if r(A)P1 # 0, then

n

Pn/r(APn r(A)Pl/rz(A)Pl. This ordering 1is called
a Kupisch series for A, and 1is unique up to a cyclic permuta-
tion, so that we can and will assume that P1 is of minimal
length. Let S. denote the simple module PJ./r(A)Pj, let
c(Pj) = ¢ denote the composition length of Pj’ and let ¢
= m‘axl_<_j_<_ncj° Note that ¢ 1is the smallest positive inte-
ger such that rS(A) = 0. We assume that A is an indecompos-
able basic algebra and a Kupisch series has been fixed. Then, using

a2 notational convention introduced by Janusz [7], we can represent

every Pj/rk(A)PJ. by a sequence of natural numbers

[n-j+k-11]),

Pj/rk(A)Pj = ([n-j1|[n-j+1]

where 0 < k < ¢., [x] denotes the least strictly positive
- ]
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residue of x modulo n, and [n-j+ 2] represents r'Q'(A)P./
]

2+1 . .. .
r Pj’ which is isomorphic to S[n-j+2,]’ for 2=0,...,

c. . P. is a chain d i i
j-1 i end of A if Cli+1] < ¢ Since
we assume that Pl has minimal length, P i1s necessarily a

chain end.

Suppose that A has Kupisch series

k ,Pk +l’oo-,Pk ,ooo,Pk ,ooo,P

Pl,-.o’P
1 1 2 m-1

K °
m

where Pj’ j € {kl,kz,...,km} are the chain ends. Then
@I;;]_Pk. is the unique (up to isomorphism) minimal faithful left
A-module, in the sense that all faithful left A-modules contain
®?=1Pk. as a direct summand. To a finitely generated faithful
left AJ-module M, there corresponds a set of finite sequences of
natural numbers, each corresponding to an indecomposable direct
summand. We call this set a sequential representation of A.
There is a basis of M as a K-vector space with the corresponding
representation f of A such that f(A) S T(dl""’dm)'
Note that every block represents a sequence and vice versa, every
sequence represents an indecomposable direct summand.

Note that f(A) satisfies R{i,j} 1if and only if there is a
submodule of Pi which is a homomorphic image of Pj’ and
£(A) satisfies R{(i} if and only if there is a submodule of
Pi that is also a homomorphic image of Pi'

If a subquotient of Pi is isomorphic to a subquotient of

P., then this isomorphism defines a relation R{i,j} that 1is
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satisfied by f(A). Relations of this kind will be called
complete relations. Now, we prove the following proposition which

helps us to recognize nonreflexive representations.
Proposition 3.3.1: Consider the following relation R{i}.

()(,s0,6) = (O(i,s",e"),

where 2= 1,...,p and h = 1,...,q. Suppose that f£(A) satis-
fies R{i} and that R{i} is not extendible. Then £ is not a
reflexive representation.

Proof: It suffices to show the proposition in case p =q =1.
That f(A) satisfies R{i}, where R{i} 1is not extendible to

t'.) are in

other blocks, and that (i,sl,tl) and (i,s'l, 1

one diagonal implies that one of the following elements must be in

R, N £(a)%:
E, = E(s,t) + E(s,t') - E(s',t) - E(s',t'), or
E, = E(s,t) - E(s,t') + E(s',t) - E(s',t'),

where E(x,y) denotes the matrix with x,y-entry equal to 1 and 0's

elsewhere.

Pick either E., 3 = 1,2, say El’ which is nonzero. We

have:

e 5 (R, n £ADT = alg Lat .

This means that Alg Lat f satisfies the following relation S:
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()(i,s,t) + (*)(i,s,t') = ()(i,s',t)

- (*)(i,s',t') = 0.

Hence, Alg Lat f satisfies a relation which £f(A) does not.

This is a contradiction, since f(A) < Alg Lat f.

As a result of (3.2.4) and (3.3.3), we can state the following.

Corollary 3.3.2: f 1is a reflexive representation if and only if
f(A) does not satisfy a relation in one block that cannot be
extended to another block. Equivalently, M 1is a reflexive A-

module if and only if the following holds:

Given any indecomposable direct summand P of M, if

-~
-

N1 = N2 are two different subquotients of P, then

there is another indecomposable direct summand P' of M

]
=z

e
2

with a subquotient N such that N =

Therefore, to determine reflexivity we number diagonals starting
with 1 for the main diagonal, 2 for the next one down, and so on.
We find the largest number d, if any exists, for which f(A)
satisfies some R{i} that involves elements in the d-th diagonal.
If R{i) is extendible, then f 1is reflexive, otherwise, it is not
reflexive. So, in the sequential representation of A, it suf-
fices to consider sequences which are not contained in any other
sequences; that is, chain ends. Note that a faithful module con-

tains all the chain ends as direct summands, so we have the

following:
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Corollary 3.3.3: If the minimal faithful A-module is reflexive,

then any finitely generated faithful A-module is reflexive.

For the rough idea of the proof of the following theorem my

thanks go to Professor William H. Gustafson.

Theorem 3.3.4: Suppose that A has more than one chain end.

Then every faithful A-module is reflexive.

Proof: Let A have Kupisch series

P ’...,P ’P ’...,P ,...P
1 k) k4l k, k

,...’Pk,
m

where P s P

K K ,...,Pk are the chain ends. Suppose

1 2 m
that f 1is the minimal faithful representation of A, which is

afforded by M = P, ® ... ®P,_ . Then by (3.3.3) and
1 m

(3.1.6), it suffices to show that f 1is a reflexive representation.

Note that R(l) 1is contained in 'I‘(ck sevesCy ). Set
1 m

d1 = kl, and dj = kj -~ kj—l’ for j > 2. Recall that
Pj/rk(A)Pj = ([n-j]|[n-j+11]...|[a-j+k-11),

for 0 < k < ¢.. Thus, we have the following surjections (since

- ]
m>1l).
dj+l
P. »>r(A)P =r (A)P ,
.+ k.
for j=1,...,m-1, and
dl
E P [ ]
P > r(A)P1 r "

m 1
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Each isomorphism in the above list defines a complete relation
R{(i,j} between two consecutive blocks j and j+l, for j =
l,...,m-1 and a complete relation R{m,l1} between blocks m and
1. By (3.2.2), these relations are preserved under reflexive
extensions.
Let us give an example to show that if A has only one chain
end, then the minimal faithful module may not be reflexive.
Suppose that A 1is an indecomposable basic serial algebra
with n =2, ¢, =3 and ¢, = 4. Then P, = (2 1 21) Iis

1 2 2

the chain end, and P, = (1 21). If £ 1is the minimal faithful

representation of A, then

(
: ~ )
a 0 0 O
C b 0 O L

f(A) = < :a,b,c,d,e,f, and g € Kp .

d e a 0
\f 8 c Db

\ y

Note that f(A) satisfies the following relation R{l}.

(+)(1,1,1) = (+)(1,3,3)
(+)(1,2,2) = (+)(1,4,4)
(¢)(1,2,1) = (+)(1,4,3),

which is a complete relation corresponding to the following

isomorphism

2 ~ 2
r (A)Pz = Pz/r (A)PZ.
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Since there is only one block, R{l} 1is not extendible; therefore,
the minimal faithful module P1 1s not reflexive.

The following are immediate corollaries of (3.3.5).

Corollary 3.3.5: Suppose that M 1is a faithful A-module. If M
has at least two indecomposable injective, projective direct sum-
mands, then M 1is reflexive.

Proof: By [5], the chain ends are precisely the indecomposable

injective, projective modules.

Corollary 3.3.6: Suppose that A contains more than one chain
end. Then the regular representation of A 1is reflexive.

Proof: The regular representation is faithful.

Corollary 3.3.7: Every faithful module over a basic quasi-Frobenius
serial algebra with n > 1 is reflexive, In particular, the regu-
lar representation of such an algebra is reflexive.

Proof: If A 1is a quasi-Frobenius, then Cp = Cyp = ev. =
c and Pl’PZ""’Pn are chain ends (see [10]). Thus if

n

n > 2, we have at least two chain ends, so that the result fol-

lows by (3.3.5).
Now we consider the case of one chain end.

Theorem 3.3.8: Suppose that A contains only one chain end.
Then the A-module Pn ® rn(A)Pn is reflexive and 1is of

minimal dimension among all the reflexive A-modules.
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Proof: 1In this case, cj =c¢c-n+3, thus n<ec. If n=c,

then A = Tn(K), and Pn i1s reflexive. Note that in this

n
case, r (A) = 0. Now suppose that ¢ - n > 0. Then we have

the following surjection
n ~ c-n
-
P r (A)Pn Pn/r (A)Pn.

This isomorphism defines a relation inside ome block. By (3.2.2),
the representation corresponding to Pn is not reflexive. Thus,
we need at least one more block corresponding to rn(A)Pn.

An interesting result of (3.3.8) is the case where n =1,
i.e., the case where A 1is an indecomposable local basic serial
algebra. In this case, by (3.3.8) A®r(A) is reflexive, and
of minimal dimension among all the faithful reflexive A-modules.
Note that dimK(A @ r(A)) = 2c - 1. Now suppose that A =

A1 + ... + At is the ring direct sum of the Aj’ where
each A. 1is a local serial algebra over the algebraically
]

closed field K. Then Aj @r(Aj) is reflexive for each

j, and of minimal dimension among all faithful reflexive AJ.—
modules. By (3.1.7), @tl: (AJ. @ r(AJ.)) is reflexive, and we

have
t
® (A. @rA.)) = A®r(A).
1 ] J

Therefore, in this case the A-module A @ r(A) is reflexive,

and is of minimal dimension among all the faithful reflexive A-

modules.






