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ABSTRACT 

Model Predictive Control (MPC) is an optimal-control based method to select 

control inputs by minimizing the predicted error from setpoint for the future. Industrially 

popular MPC algorithms use linear convolution models for predicting controlled variable 

response in future. For highly nonlinear processes, the linear MPC might not provide 

satisfactory performance. Nonlinear Model Predictive Control (NLMPC) employs 

nonlinear models of the process in the control algorithm for controlled variable response 

in future. 

Reactive distillation modeling and control poses a challenging problem because 

the simultaneous separation and reaction leads to complex interactions between vapor-

liquid equilibrium, vapor-liquid mass transfer and chemical kinetics. Hence, reactive 

distillation processes are highly nonlinear in nature. Application of reactive distillation 

for the production of ethyl acetate is considered for this dissertation. A detailed steady-

state and dynamic mathematical model of reactive distillation is developed. This model is 

used for control studies of the reactive distillation column. Nonlinear Model Predictive 

Control algorithm is developed for centralized multivariable control of reactive 

distillation column. The performance of NLMPC is compared with decentralized PI 

control structure. 

Vl l l 



LIST OF TABLES 

2.1 Selected Reactive Distillation Systems 5 

3.1 Coefficients for modified Margules equation. 28 

3.2 Reactive distillation level controller gains and reset times 37 

3.3 Tuning parameters for pressure controller 38 

3.4 Steady-state gain analysis of the ethyl acetate reactive distillation column 44 

3.5 Design specifications and parameters for reactive distillation column 49 

4.1 Dual PI composition control MV-CV pairings 53 

4.2 Ethyl acetate reactive distillation tuning for dual-ended PI composition 
control Reset time is in seconds 56 

4.3 Ethyl acetate dual PI composition control performance indices for overhead 
impurity setpoint tracking 61 

4.4 Ethyl acetate dual PI composition control performance indices for 
unmeasured feed rate disturbance 67 

4.5 Ethyl acetate dual PI composition control performance indices for 
unmeasured feed composition disturbance 73 

5.1 Tuning parameters for NLMPC with perfect model 101 

5.2 Ethyl acetate NLMPC control performance indices for overhead impurity 
setpoint tracking 102 

5.3 Ethyl acetate NLMPC control performance indices for unmeasured 
feed rate disturbance rejection 105 

5.4 Ethyl acetate NLMPC control performance indices for unmeasured feed 
composition disturbance rejection 108 

5.5 Tuning parameters for NLMPC with 25 % process / model mismatch 112 

IX 



5.6 Effect of model mismatch on NLMPC control performance indices for 
overhead impurity setpoint tracking 119 

5.7 Effect of model mismatch on NLMPC control performance indices for 
unmeasured feed rate disturbance rejection 119 

5.8 Effect of model mismatch on NLMPC control performance indices for 
unmeasured feed composition disturbance rejection 120 



LIST OF FIGURES 

3.1 Flow sheet of Ethyl acetate production 25 

3.2 Overhead pressure and level and pressure control structure 36 

3.3 Steady state temperature profile for the ethyl acetate reactive distillation 
column. 39 

3.4 Plots for developing correlation between top as well as bottom impurity 
and tray temperature for inferential calculations 41 

3.5 Steady-state gain behavior with reflux ratio (RR) and reboiler duty 
(QR) as manipulated variables 45 

3.6 Steady-state gain behavior with reflux ratio (L/D) and boilup ratio 
(V/B) as manipulated variables 46 

3.7 Steady-state gain behavior with reflux flow (L) and reboiler duty 
(QR) as manipulated variables 47 

3.8 Steady-state gain s with reflux flow (L) and boilup ratio (V/B) as 
manipulated variables 48 

4.1 Dual ended composition PI control for overhead impurity setpoint tracking 57 

4.2 Dual ended composition PI control for unmeasured feed rate disturbance 
rejection 63 

4.3 Dual ended composition PI control for unmeasured feed composition 
disturbance rejection 69 

5.1 Collocation element 83 

5.2: Collocation on finite elements 86 

5.3 Effect of the prediction horizon on NLMPC performance 94 

5.4 Effect of the control horizon on NLMPC performance 96 

XI 



5.5: Effect of number of degrees of freedom on computational time for 
optimization 98 

5.6 Effect of equal concern error (ECE) on NLMPC performance 99 

5.7 Effect of move suppression factor on NLMPC performance for overhead 
impurity set point tracking. 100 

5.8 Comparison of NLMPC and PI controller for dual ended composition 
control for overhead impurity setpoint tracking 103 

5.9 Comparison between NLMPC and PI controllers for dual ended composition 
control for unmeasured feed rate disturbance rejection 106 

5.10 Comparison between NLMPC and PI controllers for dual ended composition 
control for unmeasured feed composition disturbance rejection 109 

5.11 Effect of model mismatch on the closed loop performance of NLMPC for 
overhead impurity setpoint tracking 113 

5.12 Effect of model mismatch on closed loop performance of NLMPC for 
unmeasured feed composition disturbance 115 

5.13 Effect of model mismatch on closed loop performance of NLMPC for 
unmeasured feed rate disturbance 117 

Xll 



LIST O F N O M E N C L A T U R E 

B Bottoms flow rate from the reactive column 

CV Controlled variable 

D Distillate flow rate from the column 

D M C Dynamic matrix control 

F Feed flow rate to the column 

F D Detuning factor for controller gain and reset time 

H T C Hydraulic t ime constant 

Hg J Enthalpy of Vapor flow of component j from reboiler 

H- J Vapor enthalpy of component j on tray I 

hg J Enthalpy of component j in the liquid bottoms 

hp J Enthalpy of component j in the feed 

h- Liquid enthalpy of component j on tray I 

h° • Ideal gas enthalpy of component j on tray I 

Kg K value of a pre-chosen reference component 

K K value of component j 

K- • K value of component j on tray I 

K Gain of the controller based on detuned TL tuning 

Kc'' Gain of the controller based on TL tuning 



K^ Ul t imate gain of the controller from A T V method 

L Reflux flow rate 

A Liquid flow rate leaving tray I 

M g Reboi ler liquid molar holdup 

M ^ Condense r liquid molar holdup 

^i Liquid molar ho ldup on tray I 

M V Manipula ted variable 

p set of model parameters 

Pu Ul t imate period of the controller based on A T V method 

Qr Reboi ler duty 

Tg Bubb le point temperature of the tray 

t Time 

u manipulated variable vector 

Vg Vapor flow rate from the reboiler to the column 

V- Vapor flow rate leaving tray i 

x,^ J Liquid mole fraction of component j in the distillate 

Xp J Liquid mole fraction of component j in the feed 

X. Liquid mole fraction of component j on tray I 

y controlled variable vector 

yg . Vapor mole fraction of component j from the reboiler 

XIV 



y,j Vapor mole fraction of component j on tray I 

Greek symbols 

Q.'- J Liquid enthalpy departure function for component j on tray I 

Q^j Vapor enthalpy departure function for component j on tray I 

rj^ Reset time of the controller based on TL tuning 

T, Reset time of the controller based on detuned TL tuning 

T. Hydraulic time constant for tray i 

O Objective function 

XV 



CHAPTER 1 

INTRODUCTION 

Reactive distillation combines both separation and reaction in one unit. It has 

been used in a small number of industrial applications for many years. Reactive 

distillation can offer significant economic advantages in some systems, particularly for 

reversible reactions which are limited by equilibrium constraints. The last decade has 

shown an increase in both research and applications of reactive distillation. Doherty and 

Buzad (1992) reviewed the reactive distillation literature up to 1992. Taylor and Krishna 

(2000) reviewed the modeling approaches for reactive distillation presented in the 

literature. Most of the reactive distillation literature is dedicated for steady-state design 

and simulation approaches. 

Only a small number of papers discuss the closed-loop control of reactive 

distillation columns. Reactive distillation is a challenge to control due to process 

nonlinearity, complex interactions between vapor-liquid equilibrium, vapor-liquid mass 

transfer and chemical kinetics. Al-Arfaj and Luyben (2002), Sneesby et al. (1997), 

Kumar and Daoutidis (1999), discussed the decentralized PI control structures for 

reactive distillation column. Sneeby et al. (1998), Al-Arfaj and Luyben (2002) discussed 

the possibility of multiple steady states in many reactive distillation systems. The 

presence of multiplicities and the highly nonlinear nature of reactive distillation may 

impose limitations on use of linear controllers. Kumar and Daoutidis (1999) have 

discussed the superior performance of nonlinear controller compared to linear controller 



for reactive distillation systems. Application of advanced process control, which 

incorporates process model for control algorithm, usually referred as Model Predictive 

Control (MPC) are used to account for process nonlinearity and non-stationary behavior 

at a expense of a more complicated and costly control strategy. Industrially popular 

model predictive control algorithms such as Dynamic Matrix Control (DMC) use a linear 

convolution model of the process for control algorithm. For highly nonlinear processes 

the linear MPC might not provide satisfactory performance. Nonlinear Model Predictive 

Control (NLMPC) can be defined as a MPC algorithm which employs nonlinear models 

of the process. Reactive distillation processes exhibits highly nonlinear behavior, hence 

the use of NLMPC for control of reactive distillation process is expected to provide 

improved performance compared to linear control strategies. 

The objective of this study is to assess the performance of NLMPC applied for 

control of a reactive distillation column. A ethyl acetate reactive distillation column was 

selected for the modeling and control studies. A FORTRAN simulation of a reactive 

distillation column was modeled and used for the control studies with following 

objectives. 

1. Determination of optimal control configuration for dual composition control 

of ethyl acetate reactive distillation column using conventional decentralized PI 

controllers. 

2. Develop an algorithm for Nonlinear Model Predictive Control (NLMPC) and 

assess the application of NLMPC for dual composition control of ethyl acetate reactive 

distillation. 



3. Compare the closed loop performance of ethyl acetate reactive distillation using 

conventional PI controller and advanced control strategies of NLMPC. 

Chapter 2 covers the previous research on reactive distillation modeling and 

control. It also covers the literature regarding the development and application of 

nonlinear and linear model predictive control algorithms. The model used to simulate the 

ethyl acetate reactive distillation column is detailed in Chapter 3. Chapter 4 covers the 

application of PI controllers for dual composition control of ethyl acetate reactive 

distillation column. Development of Nonhnear Model Predictive Control (NLMPC) is 

described in Chapter 5. This chapter also discusses the comparison of closed loop 

performance for dual composition control of reactive distillation column using PI 

controllers and using NLMPC controller. Chapter 6 summarizes the results of this work 

and makes recommendations for future work. 



CHAPTER 2 

LITERATURE SURVEY 

During recent years there has been an increased interest in reactive distillation. 

The chemical industry recognizes the favorable economics of carrying out reaction 

simultaneously with distillation for a certain class of reacting systems. There is also an 

increasing interest among academic researchers for the development of reactive 

distillation technology. Systematic design and simulation methods for reactive distillation 

systems have been reported in recent literature (Kumar and Daoutidis, 1999; Sneesby et. 

al., 1997a,b; Al-Arfaj and Luyben, 2002). This chapter describes various reactive 

distillation systems and different modeling approaches proposed. It is followed by the 

review of the work done on dynamics and control of reactive distillation columns. A brief 

review of Nonlinear Model Predictive Control (NLMPC) for control of chemical 

processes is also described. 

2.1 Modeling of Reactive Distillation Columns 

The design and operation issues of reactive distillation are more complex than 

those involved for either conventional reactors or conventional distillation columns. The 

simultaneous separation and reaction leads to complex interactions between vapor-liquid 

equilibrium, vapor-liquid mass transfer and chemical kinetics. Sharma (1985), and Gaikar 

and Sharma (1989), have published reviews describing the possibility of reactive 

distillation as an attractive process alternative for a wide variety of difficult separations. 



Doherty and Buzad (1992) reviewed the literature regarding reactive distillation and 

described several commercial reactive distillation applications. Some selected reactive 

distillations systems published in the literature are presented in Table 2.1. 

Table 2.1 Selected Reactive Distillation Systems 

Reactive System Reference 

Acetic Acid + Ethanol -^ Ethyl acetate + 

water 

Acetic Acid +Methanol -> Methyl acetate -f-

water 

Isobutylene -i- ethanol -^ ETBE 

Isobutylene + methanol -^ MTBE 

Adipic Acid + Hexamethylene diamine -^ 

Nylon 6,6 

Suzuki et al.(1971), Komatsu and 

Holland (1977), Izarraraz et al. (1980), 

Jing et al. (1985), Alejski and Duprat, 

(1996), Dudukovic and Lee (1998), 

Vora and Daoutidis (1998), (2001), 

Seferlis and Grievink (2001). 

Barbosa and Doherty (1988), (1992) 

Agredaetal. (1990). 

Sneesbyetal. (1997), (1998) 

Doherty and Buzad (1992), Isla and 

Irazoqui (1996), Hauan and Lien (1998), 

Sneesby (1999), Baur et al. (2000) 

Jacobs and Zimmerman (1977), Grosser 

et al. (1987), Doherty and Buzad (1992). 



The complete list of all reactive distillation systems is not attempted here but the 

systems described in Table 2.1 show the application of the reactive distillation 

technology in the chemical industry, petroleum refining and polymer processing 

Reactive distillation modeling literature can be broadly classified into two 

different approaches used for modeling reactive distillation process. These modeUng 

approaches are as follows: 

1. Equilibrium (EQ) stage modeling approach 

2. Non-equilibrium (NEQ) stage modeling approach 

2.1.1: Equilibrium (EQ) stage modeling approach 

The development and application of the EQ stage model for conventional (i.e. 

non-reactive) distillation has been discussed in several textbooks and review articles. (See 

for example Holland, 1981; Kister, 1992). In developing EQ stage model for reactive 

distillation, the kinetics terms representing the rate of the reactions are added to the 

material balance equations. Similarly, the energy balance equations are modified by the 

inclusion of heat of reaction terms. 

Much of the early literature on reactive distillation modeling is concerned 

primarily with the development of methods for solving the steady-state EQ stage model. 

Review of these methods reveal that these methods are by and large extensions of the 

methods that have been developed for solving conventional distillation problems. Suzuki 

et al. (1971) extended the bubble point method of Wang and Henke (1966) to solve the 

distillation problem. Nelson (1971) has modified Newton-Raphson method for solving 



reactive distillation equations. Komatsu and Holland (1977) have modified the 6 method 

(Holland, 1981), developed for solving conventional distillation problems, to solve the 

reactive distillation system for esterification reaction. Another article from this group is 

Izarreaz et al. (1980). Mommessin and Holland (1983) discussed the computational 

problems associated with multiple columns. Relaxation methods involve writing the 

material and energy balance equations in unsteady state form and integrating numerically 

until the steady-state solution is found. Komatsu (1977) compares the EQ stage model 

calculations based on relaxation methods with experimental data, showing that the EQ 

model composition profiles are qualitatively correct. Chang and Seader (1988) applied 

the homotopy-continuation method for reactive distillation for the esterification reaction. 

Lee and Dudukovic (1998) have also used homotopy continuation method to solve 

reactive distillation problems. Venkatraman et al. (1990) describe the use of the inside-

out algorithm used in Aspen Plus commercial software package (RADFRAC). Sneesby et 

al. (1997) used two different commercial simulators: Pro/U (Simulation Sciences, 1994) 

and SpeedUp (Aspen Technology, 1993) for solving reactive distillation problem for 

ethyl tert butyl ether (ETBE) synthesis. 

Bock et al. (1997) reported a detailed analysis of a reactive distillation system 

using the esterification of acetic acid as an example. The slow reaction rate of the system 

results in less conversion for the reactive distillation column and hence the use of a 

recovery column along with reactive column has been proposed for obtaining high purity 

ethyl acetate. SeferUs and Grievink (2001) discussed the optimal design and sensitivity 

analysis of reactive distillation units using collocation models. The ethyl acetate process. 



which consists of a reactive column along with a recovery column, has been considered 

for this study. The optimal design of ethyl acetate process flowsheet was used as a basis 

for our study. 

2.1.1.1 Review of ethyl acetate reactive distillation system 

Suzuki et al. (1971) described the design and simulation of an ethyl acetate 

reactive distillation column. A reactive column with thirteen equilibrium stages, made up 

of eleven trays, one total condenser and one reboiler, was simulated in the study. Ethyl 

acetate was withdrawn from the top in the distillate stream, and the feed consisting of the 

reactants acetic acid and ethyl alcohol was introduced on stage six. This single feed 

configuration for ethyl acetate reactive distillation has become a prototype configuration 

and many researchers have developed/applied several numerical algorithms to solve the 

nonlinear steady-state model for the above prototype configuration. The objective of 

above research was to establish the convergence characteristics and the robustness of the 

numerical algorithms, rather than to analyze the column behavior in detail. 

The ethyl acetate conversion (-30%) and the ethyl acetate purity of (=50%) 

reported in the literature (Suzuki et. al., 1971) for the single feed configuration. This ethyl 

acetate composition is lower than the azeotropic composition (54%). In practice, it would 

be desirable for the column at least attain product purity greater than the azeotropic 

composition to justify the use of a reactive distillation instead of a conventional 

configuration of a reactor followed by a distillation column. 



The composition as well as reaction rate profiles for the single feed composition 

shows that majority of the reaction takes place in the reboiler and the bottom part of the 

column, and the upper half of the column acts essentially as a distillation column instead 

of reactive distillation column. This happens because the acetic acid, which is the 

heaviest of the four components, moves down the column and is present in negligible 

amount in the upper half of the column, resulting in negligible reaction in the upper half 

of the column. The absence of the reaction in the upper part of the column hinders 

achieving a composition higher than the azeotropic composition with this configuration. 

Furthermore, it can be observed that ethanol is present in significant amounts in the upper 

half of the column, which retards the separation (and hence achievable purity) due to 

closeness of boiling points between the ethyl acetate and ethyl alcohol. These 

observations suggest that the countercurrent flow of the reactants ethyl alcohol and acetic 

acid in the column could enhance the forward reaction on several trays, thus improving 

the overall conversion. Alejski et al. (1996) studied the multiple feed configuration for an 

experimental setup for ethyl acetate column. The experimental results show an 

improvement in the conversion of ethyl acetate. 

Bock et al. (1997) reported a detailed analysis of ethyl acetate reactive distillation 

column. The slow reaction rate of the ethyl acetate system results into less conversion for 

the reactive distillation column. The use of a recovery column along with reactive column 

has been proposed for obtaining high purity ethyl acetate. The reactive column with 

countercurrent flow of reactants was used. Pure ethanol and acetic acid are fed separately 

into the colurrm that operates at atmospheric pressure. Under these conditions, acetic acid 



is the heaviest of the components and moves toward the bottom of the column. Ethyl 

acetate is the lightest and moves toward the top of the column. It is expected that the 

middle portion of the distillation column is the chief reaction zone. The rectifying section 

fractionates the ethyl acetate out of acetic acid, and the stripping section removes alcohol 

from water. Ideally, the ethyl acetate is the distillate and water is the bottoms product for 

this system. The quaternary system consisting of ethanol, acetic acid, water and ethyl 

acetate is highly nonideal. It can form four binary azeotrope mixtures and one ternary 

azeotrope. Over the wide range of composition, ethanol and water do not differ greatly in 

volatility, making it difficult to strip only water as bottom product. The reactant ethanol 

has a relatively high volatility and prefers the vapor phase rather than liquid phase where 

the reaction takes place. This leads to a low composition of ethanol in the liquid phase, 

reducing the production rate of ethyl acetate. 

The rate of the esterification reaction between acetic acid and ethanol is generally 

low, which implies that it is favored by long residence times in each stage. It is evident 

from all the previous studies on ethyl acetate reactive distillation columns that an 

unfavorable physical equilibrium makes the production of high-purity ethyl acetate 

impossible from a single distillation column. However, the use of a second recovery 

column operating at a higher pressure or a feed with a large excess of acetic would lead 

to the production of ethyl acetate of the desired purity. The first option of using a 

recovery column at a higher pressure is selected for the study. 

A distillation column operating at higher pressure (350 kPa) to break the 

azeotrope and produce high purity ethyl acetate was considered as a recovery column. 

10 



The distillate stream from the reactive column is fed to the recovery column. At the 

increased pressure, ethyl acetate becomes heavier than ethanol and water so that it 

appears as the bottoms product. The target purity level of the ethyl acetate is set at 99.5%. 

The effect of reaction is considered negligible because the column operates without any 

sulfuric acid catalyst and stages have small liquid phase holdups. Acetic acid appears as 

the bottom product of the recovery column and therefore directly affects the purity of 

final ethyl acetate product. Hence, a specification is imposed on the maximum allowable 

concentration of acetic acid in the distillate of the reactive column. The control of the 

concentration of the acetic acid in the distillate of reactive column can be achieved 

through the reduction of the liquid phase holdup in the upper section of the reactive 

column to suppress the reverse reaction. 

2.1.2: Non-equilibrium (NEQ) stage modeUng approach 

The NEQ stage model for reactive distillation follows the methodology of rate-

based models for conventional distillation (Krishnamurthy and Taylor (1985); Taylor and 

Krishna, 1993). The NEQ stage model assumes the interface between vapor and liquid on 

each stage is in thermodynamic equilibrium. The component molar balances for vapor 

and liquid phase consist of an interfacial mass transfer rate term, which is the product of 

the molar flux and the net interfacial area. The interphase energy transfer rates have 

conductive and convective contributions. Building an NEQ model for reactive distillation 

problem involves the detailed consideration of mechanism of reaction, namely whether 

the system is homogenous or heterogeneous. The theoretical knowledge of mass transfer 

11 



and heat transfer with chemical reactions is applied while determining the interfacial 

transfer rates. 

Sawistowski and Pilavakis (1979, 1988) reported a model of a packed reactive 

distillation column for the esterification of methanol and acetic acid to methyl acetate 

based on NEQ stage approach. In 1990, Aspen Technology Inc. introduced the 

RATEFRAC model for rate-based multicomponent separation modeling 

(Sivasubramanian and Boston, 1990). RATEFRAC is based on the NEQ stage model of 

Krishnamurthy and Taylor (1985) with the addition of the equations to account for the 

effect of reaction on mass transfer. Zheng and Xu (1992) have used an NEQ stage model 

to simulate catalytic distillation operations in a packed column. Kreul et al. (1999) used 

an NEQ stage model for homogeneous reactive distillation. They demonstrated that EQ 

and NEQ models can lead to significantly larger differences in calculated concentration 

profiles for reactive separation units than for non-reactive operations. Hence, the 

additional efforts of the more complicated NEQ approach are justified. Baur et al. (1999) 

compared the EQ and NEQ stage models for MTBE process. They also have 

demonstrated the differences in the predictions of conversions and composition profiles 

using these modeling approaches. Lee and Dudukovic (1998) described an NEQ stage 

model for homogeneous reactive distillation for esterification of ethanol and acetic acid 

to ethyl acetate. A close agreement between predications of EQ and NEQ stage models 

was found only when the tray efficiency could be correctly predicted for the EQ stage 

model. 

12 



2.1.2.1 Limitations of NEQ stage model 

The NEQ stage model requires hardware design specifications to calculate mass 

transfer coefficients, interfacial areas, and liquid holdups. The NEQ stage model requires 

thermodynamic properties, not only for the calculation of phase equilibrium but also for 

the calculafion of the driving forces for mass transfer accompanied by chemical reactions. 

In addition, physical properties such as surface tension, diffusion coefficients, viscosities, 

etc. for the calculation of mass and heat transfer coefficients and interfacial areas are 

required. The necessity of accurate predictions of interfacial transfer coefficients based 

on predicted thermophysical properties of the system may increase the complexity of the 

model and may limit the usage of this approach for control purposes. 

2.1.3. Dynamics and Control of Reactive Distillation. 

The majority of literature available on reactive distillation studies is concerned 

with the development of steady-state profiles for the system under consideration. Very 

few articles deal with the dynamics of reactive distillation. Some of these articles deal 

with the control of reactive distillation column. However, there is abundant literature 

available on the general subject of control of conventional distillation columns. Several 

authors have written entire books on control of distillation columns (Shinsky, 1984; 

Deshpande, 1985; Luyben, 1992). However, the available literature dealing with reactive 

distillation control is quite limited. 

Sorensen and Skogestad (1994) discussed control strategies for reactive batch 

distillation for the esterification reaction. Control of both reactor temperature and 

distillate composition (two point control) is found to be difficult due to large interactions 
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in the column. Controlling the temperature on the tray in the column (one point control) 

was found to give good performance for a given process with no loss of reactant and 

higher reactor temperature. 

Ruiz et al. (1995) described a software package called READSYS (Reacdve 

distillafion dynamic simulator) for which an EQ stage model was used. The authors state 

that their program can be used to study unstable column operations such as start-up, shut 

down. Scenna et al. (1998) employ READSYS to study the start-up of reactive 

distillation columns. They show that the start-up policy can have strong influence on the 

ultimate steady state behavior of the reactive distillation column. Abufares and Douglas 

(1995) used an EQ stage model for steady-state and dynamic modeling of reactive 

distillation column for production of MTBE. The steady-state model was RADFRAC 

from Aspen Plus and dynamic model was SpeedUp, a commercial dynamic process 

simulator. The focus of this study was the transient response of the system. 

Alejski and Drupat (1996) described a dynamic model of reactive distillation for 

esterification of ethanol and acetic acid to ethyl acetate. The model is based on EQ stage 

approach with conventional assumptions of negligible vapor phase holdups. Departures 

from the phase equilibrium could be handled by specification of vaporization efficiency. 

The corrections of the conversion due to imperfect mixing were accounted for using 

'conversion efficiency' which was calculated by eddy diffusion model in terms of the 

Peclet number. The model was compared with a pilot-scale column. Column start-up 

operation was investigated. 
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Sneesby et al. (1997a) developed an EQ stage model for synthesis of ETBE using 

SpeedUp. Sneesby (1997b) developed a dynamic model for the same process. The 

dynamic model assumed that reaction equilibrium was attained on all stages and hence 

reaction kinetics term was neglected in the material and energy balances. Linear control 

studies using decentralized PI controllers were performed on the reactive distillation 

column. The product purity as well as limiting reactant conversion was assumed to be the 

control objectives. An inferential control scheme that uses temperature of a suitable tray 

was developed. Several control configurations namely, (L, V), (L, B), (L/D, V), (L/D, 

V/B) were studied. These control configurations were set up for single composition 

control using the first variable in the bracket as primary manipulated variable and the 

second variable in the bracket as secondary manipulated variable. The control scheme 

performance was compared statistically by means of Integral Absolute Error (lAE) and 

Integral Time Absolute Error (ITAE). The (L, V) and (L, B) configurations, both set up 

for single composition control, were recommended. 

Daoutidis and Kumar (1995) developed a detailed dynamic model incorporating 

vapor dynamics for reactive distillation column for the generalized esterification reaction. 

An output feedback controller was developed on the basis of a (Differential Algebraic 

Equation) DAE model and its superior performance over an analogous controller derived 

on the basis of the ODE model was demonstrated. Daoutidis and Vora (1999, 2001) 

developed a nonlinear input-output linearizing controller for reactive distillation column 

for production of ethyl acetate. The superior performance of nonlinear controller over the 

linear PI controller was demonstrated. 
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Chen et al. (2000) presented the design and the performance of a hybrid model 

based control of an industrial reactive distillation column. The model structure was the 

combination of first principles with standard black-box techniques. They demonstrated 

that this model structure could be successfully used in Internal Model Control (IMC) 

scheme for the on-line control of the process. 

Al-Arfaj and Luyben (2002 a,b,c) presented the control of reactive distillation 

systems with single input single output PI control schemes. The results are provided for a 

methyl acetate reactive distillation system and a ETBE reactive distillation systems. 

Overall three types of control structures are evaluated for the reactive distillation systems 

under consideration. In the first control structure, the top and bottom purities are 

controlled by adjusting reflux and reboiler heat duty, respectively. The composition 

inside the reactive zone of the column is measured and controlled by manipulating one of 

the fresh feeds. In the second control structure only the column internal composition is 

controlled and a temperature is controlled in the stripping section in order to maintain 

bottom purity at a specified value. Distillate purity is not controlled but the reflux ratio is 

held constant. The third control structure uses two temperatures that manipulate the two 

fresh feeds. Reboiler heat input is flow controlled and serves as a production rate handle 

while the reflux ratio is held constant. It was found that a control structure with one 

internal composition controller and one temperature controller provide effective control. 

It was shown that direct control of the product purity for the high conversion/high-purity 

methyl acetate system is difficult because of system nonlinearity. It was also shown that 

the tray temperature control avoids the nonlinearity 
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2.1.4: Model Predictive Control 

Model Predictive Control (MPC) is an optimal-control based method to select 

control inputs by minimizing the predicted error from setpoint for the future. The 

objective function is defined in terms of both present and predicted system variables and 

is evaluated using an explicit model to predict future process outputs. MPC is normally 

applied to multivariable process control, where its real benefits can be realized. 

Cutler and Ramaker (1979) developed the most popular form of MPC, which is 

called Dynamic Matrix Control (DMC). The DMC algorithm uses linear step-response 

convolution models for predicting controlled variable responses in future. The general 

topic of model identification is covered extensively by Box et al. (1994). Many 

researchers have reported applications of DMC on distillation column control. McDonald 

and McAvoy (1987) applied DMC to simulations of a benzene-toluene column and an 

isobutene-n-butane column. For moderate and high purity columns they have reported 

difficulties in obtaining step response process models. They developed a nonlinear DMC 

approach by updating the process model with online gain and time scheduling. 

Gokhale et al (1995) applied DMC to a propylene propane splitter (C3 spUtter) 

and compared its performance to that of PI control. They did not observe a significant 

difference in the performance between PI control and DMC for servo and regulatory 

control. Cutier and Finlayson (1988a, 1988b) reported the application of DMC on 

industrial hydrocracker C3-C4 splitter and a hydrocracker preflash column. Huang and 

Riggs (2000) reported the application of DMC to a gas recovery unit. 
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Though there are many applications of DMC reported for conventional distillation 

column, very few MPC applications are reported for reactive distillation control. Ruiz et 

al. (1997) have reported application of DMC for control of reactive distillation for ethyl 

acetate synthesis. 

2.1.5 Nonlinear Model Predictive Control (NLMPC) 

MPC, which is industrially popular, employs linear models in the control 

algorithms. For highly nonlinear processes as well as processes involving changes in 

operating condition over a wide range (e.g., polymerization process, pH control, etc.), the 

linear MPC might not provide satisfactory performance. Nonlinear Model Predictive 

Control (NLMPC) can be defined as a MPC algorithm, which employs nonlinear models 

of the process. Instead of using linear convolution models, NLMPC can be applied to 

processes described by a wide variety of model equations such as nonlinear ordinary 

differential/algebraic equations, partial differential equations, etc. 

The solution procedure for NLMPC involves setting up the control problem as a 

nonlinear programming (NLP) problem and solving it over some prediction horizon. 

There are two ways of implementing model predictive control. The first method employs 

separate algorithms to solve model equations and to carry out optimization. This method 

is called sequential solution and optimization approach. The detail discussion of this 

approach is provided in Chapter 5. The various versions of this strategy have been 

reported by Hicks and Ray (1971), Sargent and Sullivan (1978), and Morshedi (1986). 

The algorithm requires solution of the model dynamic equations at each iteration. Jones 



and Finch (1984) reported that such methods spend about 85% of the time integrating the 

model equations in order to obtain gradient information. This can make the sequential 

solution and optimization approach prohibitive in terms of computation time, and 

unattractive for use in a large-scale real-time application. 

An attractive alternative to solve the NLP problem is to use a simultaneous 

solution and optimization strategy. Tsang et al. (1975) used the collocation method to 

discretize the model differential equations in conjunction with a constrained optimization 

problem. The discretized model differential equations are included as constraints in NLP 

problem to optimize the objective function such that the (discretized) model differential 

equations are satisfied and other constraints (if any) on the states and manipulated 

variables are met. Hertzberg and Asbjorsen (1977) suggested using orthogonal 

collocation to discretize the differential equations in order to keep the dimensionality of 

the NLP problem low. 

A powerful method for solving NLP problems is Successive Quadratic 

Programming (SQP) (Edgar and Himmelblau, 1988). It doesn't require that constraints be 

satisfied (the model equations to be solved) at each iteration but finds the optimum and 

satisfies the constraints simultaneously. Biegler (1984), Renfro et al. (1987) and Cuthrell 

and Biegler (1987) have reported the application of simuhaneous solution and 

optimization strategy to determine open-loop optimal manipulated variable trajectories. 

Cuthrell and Biegler (1987) recommended using orthogonal collocation on finite 

elements to discretize the model differential equations to provide more robustness for the 

strategy. Renfro et al. (1987) reported that when the manipulated variable is piecewise 
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constant, as in digital control, the simultaneous solution and optimization strategy can 

only be implemented within a finite element framework of discretized equations. 

Patwardhan et al. (1990) extended the application of simultaneous solution and 

optimization strategy by incorporating feedback, which effectively increases the 

robustness of the nonlinear control scheme to modeling errors and disturbances. They 

demonstrated the use of NLMPC algorithm for efficient start-up of a non-isothermal, 

non-adiabatic CSTR case study. Patwardhan and Edgar (1991) described the use of 

NLMPC algorithm for control of a packed distillation column. The NLMPC formulation 

was based on a steady-state model of the system with dynamic models of the reboiler and 

the accumulator. The NLP problem was solved to obtain optimized values of manipulated 

variables, which act as setpoints for lower-level controllers. 

Ganguly and Saraf (1993) described the startup of a distillation column using 

nonlinear analytical model predictive control. The NLP problem was formulated by 

discretizing the nonlinear dynamic model of the system by means of orthogonal 

collocation. The NLP problem was solved using SOCOLL with SQP optimization 

algorithm. Meadows and Rawlings (1997) demonstrated the application of NLMPC for 

the control of a fluidized bed reactor. They demonstrated the effect of tuning parameters, 

such as prediction horizon, control horizon, move suppression factor, on the performance 

of the NLMPC controller. 

Badgwell and Quin (2001) provided a review of NLMPC applications in industry. 

They focused primarily on recent applications reported by NLMPC vendors. Zheng and 

Zhang, (2001) demonstrated computationally efficient nonhnear model predictive 
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algorithm for control of constrained nonlinear systems. A method is suggested to exactly 

calculate the first control move, which is implemented, and approximating the further 

control moves, which are not implemented. They claimed a significant reduction in 

computational burden by means of the proposed algorithm. The feasibility for a practical 

implementation of proposed algorithm was demonstrated for distillation control and the 

Tennessee-Eastman challenge problem. 
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CHAPTER 3 

MODEL DEVELOPMENT 

An ethyl acetate reactive distillation column was considered for the modeling and 

control studies. This chapter discusses the process description, modeling assumptions, the 

vapor/liquid equilibrium model, the design parameters for the ethyl acetate reactive 

distillation, and the steady-state and dynamic model development. 

3.1 Process Description. 

Ethyl acetate is produced in an esterifiction reaction between acetic acid and 

ethanol. The achievable conversion in this reversible reaction is limited by the 

equilibrium conversion. The reaction is slightly endothermic and takes place in the liquid 

phase. Though the esterification reaction is self-catalyzed, sulfuric acid can act as 

external catalyst to enhance the reaction rate. 

CH.COOH + C^H,OH< ""f""'=""'' >CH,COOC,H, + H^O 
(3.1) 

The kinetics of this reaction have been studied for both uncatalyzed reaction and 

catalyzed reaction in the literature. The uncatalyzed rate expression provided by Amikar 

et. al., 1970 has been used for a number of simulation studies (Suzuki et. al., 1971; 

Komatsu et.al., 1977; Chang and Seader, 1988). This expression is given as follows: 

r = L [CH.COOH] [C,H,OH] - k, [CH,COOC,H, ][H,0] (3.2) 
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A:, =4.85xl0'exp( '^'^^^ 

k, = 1.23x10'exp 
4 __ ("-7150' 

where, r is the reaction rate in mole s ' , ki is the forward reaction rate constant in moles 

m s" and k2 is the backward reaction rate constant in moles m^ s"'. 

Alejski et al. (1989) proposed a kinetic expression for acid catalyzed esterification 

reaction as, 

r = k,[CH,COOH] [C,H,OH]-^[CH,COOC,H,][H,0] (3.3) 

A:, = (4.195 Cf, + 0.08815) e x p f ^ ^ ^ ^ 

K^ =7.558-0.0127 

where, 

r is the reaction rate in mole s"', ki is forward reaction rate constant in moles m^ s"', Kc is 

the equilibrium constant, and Ck is the concentration of the catalyst in vol%. 

Seferlis and Grievink (2001) have studied the optimal design of the ethyl acetate 

reactive distillation system. The details of the process consisting of the reactive column 

and the recovery column are discussed in the Section 2.1.1.1. We used the same process 

parameters for our study as Seferlis and Grievink (2001). The design of the recovery 

column was not considered for the current study. The recycle stream from the recovery 

column was considered with constant flow and composition for the reactive column. The 

flow sheet for the ethyl acetate production is shown in Figure 3.1. 
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3.2 Modeling Assumptions 

1. Pure acetic acid feed in introduced in between the top and the middle 

portion of the column. Ethanol feed is introduced in between the middle 

and the bottom portion of the column. Recycle feed is introduced near 

the bottoms of the column. 

2. The tray efficiency is assumed to be 100%.. 

3. The condenser is considered as a partial condenser 

4. The column is operated at constant pressure of 1 atm. 

5. The vapor holdup in the column is negligible. 

6. Vapor and liquid phases are uniformly mixed. 

7. Non-equal molar overflow is assumed. 

8. Vapor/liquid equilibrium is calculated using the empirical correlation 

developed for calculation of liquid activity coefficient (Suzuki et al., 

1970) 
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Figure 3.1 Flow sheet of Ethyl acetate production 
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9. Enthalpy departure functions using Soave-Redlich-Kwong (SRK) 

equation of state are used to correct the ideal enthalpy calculations for 

each phase 

The Modified Margules equation developed by Suzuki et al (1970) for 

the ethyl acetate system is used for the calculation of the activity 

coefficients of the liquid phase. 

Tray liquid dynamics use the Hydraulic Time Constant method (Franks 

1972) for both the stripping and rectifying section. 

12. The heat transfer dynamics in the condenser are considered. 

13. The volumetric holdup on each tray is considered constant. Molar 

holdup on the tray is function of liquid phase compositions on the tray. 

14. Tray temperatures are used to infer overhead and bottom compositions 

for control. 

15. PI controllers are used to control the levels in the partial condenser, the 

reflux accumulator and the reboiler. A PI controller was also used to 

control the overhead pressure. 

3.3 Vapor-Liquid Equilibrium and Enthalpy calculations 

The component property data was obtained from Reid and Prausnitz (1987) for 

each component. K-values were computed from the following equation: 

Y P' 
K,=-^ (3.4) 
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where, 

P/ = the vapor pressure of component 

Yj = activity coefficient of component j 

P = total pressure 

The vapor pressure of liquid is calculated by using the Antoine equation: 

' ^ ^ ^ - ^ . - 7 ^ (3.5) 

where Aj, Bj, C, are the constants for the Antoine equations, and are given by Suzuki et al. 

(1970). T is the temperature in Kelvin. 

The activity coefficient was calculated from a modified Margules equation 

developed by Suzuki et al.(1970) for the ethyl acetate quaternary system. The Margules 

equation is rearranged as a polynomial series in mole fractions of the components in the 

mixture as follows: 

logio (7A ) = a^xl+ a^xl + a^x^ + a^XgX^ + a^XgX,^ 

+ a^XcX^-\-a,x^xl + a^x ̂ xl + a^x ̂ xl +a,^,x^XgXc 
(3.6) 

+ a^^XgX^Xj^ + a^2X(^XiyX^ + a^^XgX^Xg +a^^XgX^ 
2 2 

+ a^^XgXp + a^^Xf^Xp 

Xj is liquid mole fraction of components y. y represents the activity coefficient and Oj-aj^ 

are constants determined from quaternary equilibrium data. The expression for the 

activity coefficient of the remaining components can be obtained by rotating the 

subscripts: A-B-C-D-A. This 16-coefficient modified Margules equation is the most 
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widely used relation in predicting non-ideal phase equilibrium of the above system, and 

the constants, aj, of modified Margules equation are given in Table 3.1 

Table 3.1: Coefficients for modified Margules equation. 

Constant 

ai 

a2 

33 

34 

35 

36 

37 

38 

39 

3lO 

311 

3 l2 

313 

314 

315 

3 l 6 

Acetic Acid 

-0.554296 

-0.324357 

-0.103685 

-0.705455 

-2.01335 

-2.25362 

0.837926 

0.52376 

0.434061 

-0.534056 

-3.25231 

5.90329 

3.3540 

0.197296 

-0.45266 

0.014715 

Ethanol 

0.581778 

0.209245 

-0.257329 

-0.562636 

-0.314853 

0.451732 

-0.115411 

0.069531 

0.0740529 

0.18701 

-0.3699985 

-0.082339 

-0.409472 

1.09247 

0.192416 

-0.172565 

Water 

0.688636 

0.0243031 

0.375534 

1.27548 

1.77863 

0.696259 

0.936722 

0.449357 

0.717790 

1.44979 

-2.11099 

0.746905 

1.12914 

0.120436 

-1.64268 

0.330018 

Ethyl Acetate 

-0.0601361 

0.229571 

1.86575 

0.355191 

0.468416 

1.51110 

-0.0599682 

0.0673994 

-3.15997 

0.941858 

-1.92225 

-0.755731 

1.03791 

0.365254 

-1.36587 

-2.13818 

and 

Enthalpy for multicomponent system was calculated by following equations 

H.,=Kj+^h (3.8) 
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The SRK equation of state was used to calculate the enthalpy departure function 

for the liquid phase as well as the vapor phase. The enthalpy departure function is a 

function of temperature, pressure and composition (via the solution compressibility factor 

z). 

3.4 Reactive distillation column modeling 

To properly develop steady-state and dynamic models to simulate the 

multicomponent ethyl acetate reactive distillation column, tray-to-tray material and 

energy balances were developed. 

For a standard reactive distillation tray where vapor holdup is considered 

negligible and reaction taking place in liquid phase, the modeling equations can be 

written as follows: 

^ = F, +L,,, +y , , -L , -V, +Vo/,i ; / / , , (3.9) 
at j=\ 

^ ^ ^ = F,xf,,+L,^,x,^,j +V,_,y,._,, -L,x,,. -V,3.,, -^Vol^Mjn (3.10) 
at 

^ ^ ^ ^ = F,hf,+L..A. +V,-,/f,., -L,/., -V,//, (3.11) 
dt 

dhi^Q (3.12) 
dt 

1 N (3.13) 

(3.14) 
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For the partial condenser, the material balance and energy balance equations are 

as follows: 

d{M') nc 
- ^ = V.-L-V,+VolX^^r^ (3.15) 

7=1 

J^ = K)'„j -^c^cj -yoyD.j +yohMjr, (3.16) 

diM'h ) 
dt 

dh 
/ - O (3.18) 

2 1 
r. = p. k^.{x^.Xg, - — Xc,^D.i) (3.19) 

yijP,=Y,,,^,,jP:,j (3.20) 

where subscript c represents condenser stage, subscript n represents the top tray of the 

column and subscript D represents the distillate. VD represents the vapor distillate from 

the partial condenser stage. 

The reflux accumulator stage is modeled as a liquid holdup tank. The terms 

relating to the vapor phase, i.e., vapor flow, vapor composition, vapor enthalpy 

corresponding to reflux accumulator are absent in the material and energy balances. 

The material and energy balance equations for the reboiler are written as follows: 

^ ^ ^ ^ = L , - 5 - y , + V o / , | ; / / , r , (3.21) 
dt j=\ 
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dJM^gXg^) 
dt - ^'•\.j - Bxg. - Vgyg. + Volg/j^Kg (3.22) 

d{M'hg) 
—f^ = LJr,-Bhg-VgHg+Q^ (3.23) 

~^^^ (3.24) 

/; = p. k^. {x^.Xg^ -—x^.x^^) (3.25) 

y.jPi = r,.j^,.jP,'.j (3.26) 

3.4.1 Steady-state simulation development 

For steady-state design of a multi-component reactive distillation column. The 

material and energy balance equations developed in the section 3.4 were set equal to zero 

for steady state. Holland (1981) describes how to use the Theta Method to improve 

convergence of a steady state distillation simulation. The basic procedure described by 

Holland and used in this study for solving the steady state ethyl acetate reactive 

distillation simulation was as follows: 

1. Initial guesses for the required reboiler duty, tray temperature, and 

vapor flow rates were made. 

2. On the basis of the most recent sets of temperature and vapor flow rates, 

the values of n/s, i.e. number of moles of components reacted per unit 

time on stage/ were calculated. 
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3. Material balances and VLE calculations were used to update the 

component flow rates on each tray. 

4. The Theta Method was used to converge the component mole fractions 

on each tray 

5. Tray temperatures were updated using VLE and the Kb method. 

(Holland, 1982) 

Vapor flow rates on each tray were updated using energy balance equations. The 

above steps were repeated until the tray-to-tray material and energy balances were 

converged to a desired tolerance. 

3.4.2 Dynamic Simulation Development 

A dynamic simulation was developed using a FORTRAN 77 code. The 

differential equations developed in section 3.4 were integrated numerically using the 

explicit Euler integration (Riggs, 1994) with a fixed step size of 0.5 seconds. The small 

step size was required because the overall system of equations was stiff The small step 

size assured numerical stability over long integration times. Rigorous VLE combined 

with a small integration step size settled in relatively large computational time. To speed 

up the simulation, the inside-out algorithm (Boston and Sullivan, 1974) was applied for 

VLE calculations. 

The inside-out algorithm is a modified version of the Kb method (Holland, 1982). 

A linear approximation for K values as a function of tray temperature was used for each 

component. 
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\n{Kg) = A-^ (3.27) 

Using basic rules for vapor/liquid equilibrium for a given tray and j components, 

\n{Kg) = Y^y^\n{K.) (3.28) 

Using rigorous VLE calculations, the K values and compositions were calculated 

for use in Equation 3.27 at two different temperatures, T and T+AT, where AT is small. 

Then by combining Equations 3.27 and 3.28 with the data at two temperatures, A and B 

are updated. 

Y.yM^.T.M)~Y.yMK,T) 
B = - ] H (3.29) 

T T + AT 

A = 2]3;.ln(ii:^,) + | (3.30) 

During an integration step if any temperature did not change by more than 1° C , 

the inside-out algorithm was used to calculate K values for each component on each tray. 

However after every composition control action or when tray temperatures changed by 

more than 1° C, the rigorous VLE calculations were used to reparameterize A and B for 

the Kb model for each component on each tray. 

3.5 Condenser Heat Transfer Dynamics 

The cooling duty of the condenser can be manipulated freely by adjusting the 

coolant flow rate, when refrigeration is used, or by adjusting a hot vapor bypass around 
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the condenser. In some distillation studies the pressure control is assumed perfect and the 

cooling duty is not calculated (Duvall, 1999). Heat transfer dynamics of the condenser 

was not modeled in this case. 

For the reactive distillation column under consideration, the partial condenser is 

modeled as a flooded condenser. In this case the heat transfer area decreases as more 

cooling water tubes are covered by the condensate (i.e. UA is not a constant). To simplify 

the model, the heat transfer area is assumed to be proportional to the available vapor 

volume is the shell side of the condenser: 

C/A(r) = i^,(V,„,,,-V„,(0) (3.31) 

where Viiq(t) = volume occupied by liquid in the shell side of the condenser at time t, 

Vtot = total volume of condenser shell side, 

K[ = constant. 

At each time step, the liquid volume can be calculated from the liquid material 

balance, and the UA(t) term is calculated from Equation 3.31. Then the cooling duty can 

be calculated by using the value of UA(t) and AT. The condenser duty calculated at each 

time step is used in energy balance equation of partial condenser (Equation 3.17). It 

should be noted that the condenser heat transfer model presented here is just an 

approximation. However, it is reasonable enough to represent the control relevant process 

behavior. 
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3.6 PI Level Controllers 

The level controllers were not considered part of the composition control problem 

for the reactive distillation problem. The level controllers were tuned prior to 

composition controllers for all control configurations and controllers (i.e., PI, NLMPC, or 

DMC). PI level control was used to maintain the holdups in the condenser and the 

reboiler at 50 % capacity. Tuning was critically damped for a 5% change in the level 

setpoint (Marlin, 1995). 

The condenser for the reactive distillation was assumed to be a partial condenser. 

The overall system was modeled as a shell and tube heat exchanger and a reflux 

accumulator tank. The overhead vapor acts as the tube side fluid and cooling water as 

shell side fluid. The heat transfer rate for condensation of vapor was assumed to be 

proportional to the area of tube bundle exposed to the vapor in the condenser. Hence the 

level in the heat exchanger determines the condenser duty (QC). The level in the heat 

exchanger is manipulated with the condensed liquid flow from the heat exchanger. The 

level controller on the reflux accumulator is cascaded to the level controller on the heat 

exchanger as shown in Figure 3.2. Table 3.2 summarizes the values for gains and reset 

values for the condenser level, the accumulator level and the reboiler level for each 

configuration. Gains for L, D, and B are in Ibmol/sec while gains for V (reboiler duty 

controlled) are in btu/sec. Units for reset times are in seconds. 
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Figure 3.2 Overhead level and pressure control structure 

Table 3.2: Reactive distillation level controller gains and reset times. 

3.7.Overhead Pressure Dynamics and Control 

The relative changes in the pressure for the reactive distillation column are small, 

and have very small or negligible effect on phase equilibrium and enthalpy calculations. 

Hence, mass and energy balances and phase equilibrium models are solved first by 

assuming constant tray pressures. To account the pressure changes in partial condenser, a 

total molar balance is written for the entire vapor volume in the column, reflux drum, the 

overhead piping vapor mass balance is applied to the pressure condenser (Luyben, 1987). 

dMy ^ y,,,,, dP _^^ _ y _ ^ 

dt RT,^^ dt ' 

where Mv = moles of vapor in the partial condenser 

(3.32) 
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Table 3.2: Reactive distillation level controller gains and reset times. 

Configuration 

[L,V] 

[L,B] 

[L/D,V/B] 

[L/D,V] 

[L/D,B] 

[L,V/B] 

Level Controller 

Condenser level 

Accumulator level 

Reboiler level 

Condenser level 

Accumulator level 

Reboiler level 

Condenser level 

Accumulator level 

Reboiler level 

Condenser level 

Accumulator level 

Reboiler level 

Condenser level 

Accumulator level 

Reboiler level 

Condenser level 

Accumulator level 

Reboiler level 

Gains 

-2x10"' 

1x10"' 

2x10"^ 

-2x10"^ 

1x10"' 

0.9x10' 

-2x10"^ 

1x10"' 

4x10"^ 

-2x10"^ 

1x10"' 

4x10"^ 

-2x10"^ 

1x10"' 

0.9x10' 

-2x10"^ 

1x10"' 

4x10'^ 

Reset Time 

3x10^ 

1x10^ 

8x10^ 

3x10^ 

1x10^ 

4x10^ 

3x10^ 

5x10' 

IxlO' 

3x10^ 

5x10' 

IxlO' 

3x10^ 

5x10' 

4x10^ 

3x10^ 

1x10^ 

1x10^ 

V = vapor distillate molar flowrate 

VT = molar vapor flow rate leaving the top tray in the column entering partial 

condenser 

Le = molar flowrate of vapor being condensed to liquid in the condenser 

V,,„ = Total vapor volume in the column, partial condenser and overhead piping 
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R = universal gas constant 

T,op= temperature of the top tray. 

Overhead pressure of the column is controlled by the vapor distillate flow from 

the partial condenser for all the control configurations. The PI pressure controller was 

tuned using a field tuning procedure (Riggs, 2001). The response of pressure controller to 

pressure setpoint change was tuned for critically damped or slightly overdamped 

response. The tuning parameters for the pressure controller used in this study are given in 

Table 3.3. 

Table 3.3 Tuning parameters for pressure controller 

Gain Reset Time 

Pressure controller -3x10"^ 3x10^ 

The units of gain are atm/(lbmol s' ) and units of reset time are seconds. 

3.8.Inferential Composition Control 

For ethyl acetate reactive column, composition of acetic acid in the overheads and 

ethyl acetate in the bottoms was inferred from the temperature using a linear correlation 

of 

ln(x) = A-t-- (3.33) 

where x is product impurity (mole fraction), and T is tray temperature. Riggs, 2001 

describes a simple technique to locate the proper tray temperature to infer product 
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composition. Marlin (1995) also has given guidelines and a procedure to develop 

inferential control for distillation columns. 

Figure 3.3 shows the steady state temperature profile for the ethyl acetate reactive 

distillation column. The trays are numbered from bottom to top. The temperature within 

the reactive (middle) section of the reactive column decreases because of the endothermic 

nature of the esterification reaction. 

220 

T 200 
3 

g_ 180 
E 

> 160 
(0 

140 

ottoms 

10 15 20 

Tray number 

Overhead 

25 30 

Figure 3.3 Steady state temperature profile for ethyl acetate reactive distillation column 

The guidelines provided by Riggs (2001) and Moore (1992) were followed to 

locate the proper tray location for inferential calculation. Tray 26 was selected for 

overhead inferential composition calculation and Tray 2 was selected for bottom 

inferential composition control calculations. 

For multi-component distillation systems, setting temperature and pressure does 

not specify composition. On-line analyzers were required to update the B parameter at 
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each analyzer sampling period of 5 minutes. The parameter B was updated for top 

inferential calculations as well as bottom inferential calculations. Based on these updated 

B parameter, one past temperature and inferred composition, and Equation 3.33, the new 

inferred compositions for control were calculated as follows for both top and bottom 

inferential calculations 

Ax = A-,,, 
B | i - 1 

.7- r„„ 

.V = .v„,j + Ax 

(3.34) 

(3.35) 

Here Toia 3nd Xoid 3re the old temperature and composition, respectively. Exactiy similar 

equations can be written for Ay with corresponding terms related to overhead inferential 

calculations. 
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(b) Bottom inferential calculation based on temperature on Tray 2 

Figure 3.4 Plots for developing correlation between top as well as bottom impurity and 
tray temperature for inferential calculations. 

41 



3.9.SteadY state gain analysis of the ethvl nr^i.t. reactive distillafinn .y^tem 

Reactive distillation columns are highly nonlinear, and many researchers have 

reported multiple steady-state solutions for reactive distillation systems, e.g., Al-Arfaj 

and Luyben (2002). Such phenomena have impact on design and control of reactive 

distillation systems. For the ethyl acetate reactive distillation system the desired control 

objectives are to control the acetic acid impurity in the overhead and the ethyl acetate 

impurity in the bottoms of the column. The available manipulated variables are the reflux 

rate, bottoms flowrate, reboiler heat duty, reflux ratio and boilup ratio. The steady-state 

gain analysis of ethyl acetate reactive distillation was performed to analyze the effect of 

different manipulated variables on the control variables of the system. 

The sensitivity of the steady-state gain of overhead acetic acid impurity to the 

reflux ratio (L/D) when the reboiler duty (QR) was kept constant shows significant 

nonlinear behavior [Figure 3.4 (a)].As the reflux ratio is changed by around 5%, the 

process gain changes by over a factor of two. Figure 3.4 (d) shows that the sensitivity of 

the steady-state gain of bottom ethyl acetate impurity to the reboiler duty (QR) at 

constant reflux ratio (L/D). As the reboiler duty is changed by 10%, the process gain 

changes by factor over two. At constant reflux ratio, the gain of overhead acetic acid 

impurity to the reboiler duty changes sign for varying reboiler duty values as shown in 

Figure 3.4 (c). This indicates that at constant reflux ratio, the same value of overhead 

acetic acid impurity is obtained for two different values of reboiler duty. Hence, ethyl 

acetate reactive distillation system shows input multiplicity. 
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Figure 3.5 (a) shows the sensitivity of the steady state gain of overhead acetic acid 

impurity to the reflux ratio (L/D) at constant boilup ratio (V/B). The sensitivity of the 

steady state gains of bottom ethyl acetate impurity to the boilup ratio (V/B) at constant 

reflux ratio (RR) exhibits significant nonlinearity of the system [Figure 3.5 (d)]. As the 

boilup ratio was changed by about 10%, the process gain changes by over a factor of two. 

At constant reflux ratio, gains of overhead acetic acid impurity to the boilup ratio (V/B) 

changes sign as shown in the Figure 3.5 (b). 

Figure 3.6 (a) shows the sensitivity of the steady state gain of overhead acetic acid 

impurity to the reflux flowrate (L) at constant reboiler duty (QR). As reflux flow changes 

by about 10%, the gain value changes by a factor of two. At constant reflux rate, as the 

value of reboiler duty was changed by 10% , the gain of the bottom ethyl acetate impurity 

to the reboiler duty changes by a factor over four [Figure 3.6 (d)]. This shows highly 

nonlinear behavior of the system. 

Figure 3.7 (a) shows that at constant value of boilup ratio (V/B) the gain of 

overhead acetic acid impurity to the reflux flowrate (L) increases with value of reflux 

flowrate. Figure 3.7 (d) shows that at constant reflux flowrate, as the boilup ratio changes 

by 10%, the gain of bottom ethyl acetate impurity to the boilup ratio (V/B) changes by a 

factor over eight. 

Table 3.1 summarizes the steady-state gain analysis for the ethyl acetate reactive 

distillation system. The table shows the % change in steady-state process gain 

corresponding to a specified % change in the manipulated variable. The figures in the 

table are not exact values but represents a approximate values. 
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Table 3.4 Steady-state gain analysis of the ethyl acetate reactive distillation column 

Configuration % change in % change in % change in % change in 
manipulated process gain for manipulated process gain for 
variable for overhead loop variable for bottoms loop 
overhead loop bottoms loop 

[UD,V] 

[UD,V/B] 

[L,V] 

[L,V/B] 

10 

12.5 

12 

12 

200 

150 

150 

33 

11 

10 

10 

12 

300 

300 

600 

300 

Overall the steady-state gain analysis of the ethyl acetate reactive distillation system 

shows highly nonlinear behavior. 
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3.10. Summary of design parameters 

Table 3.5: Design specifications and parameters for reactive distillation column 

Number of stages 

Rectifying section 

Reactive section 

Stripping section 

31 

25-31 

7-24 

1-6 

Stage holdups 

Rectifying section (m^) 

Reactive section (m^) 

Stripping section (m^) 

Distillate flow (kmol/sec) 

Bottoms flow (kmol/sec) 

Reflux ratio 

Feed flowrate 

Acetic acid feed (kmol/sec) 

Ethanol feed (kmol/sec) 

Recycle feed (kmol/sec) 

Distillate product composition (mol fraction) 

Ethanol 

Acetic acid 

Water 

Ethyl acetate 

Bottoms product composition (mole fraction) 

Ethanol 

Acetic acid 

Water 

Ethyl acetate 

Reboiler duty (kW) 

0.15' 

1.75 

1.65 

4.881x10"-

9.094x10"' 

0.8211 

8.916x10 

8.736x10"' 

4.025x10'-

0.2383 

0.0004 

0.2093 

0.5520 

0.0249 

0.0876 

0.8867 

0.0008 

171.035 

-4 

49 



Condenser duty (kW) 137.736 

Recycle feed composition (mole fraction) 

Ethanol 0.2856 

Acetic acid 0.0 

Water 0.2514 

Ethyl acetate 0.4630 

Tray number for overhead inferential composition 26 

calculations 

Tray number for bottoms inferential composition 2 

calculations 

1 The liquid holdup in the rectifying section is reduced to suppress the reverse reaction and control the concentration of 
acetic acid in distillate, (refer Section 2.1.1). 
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CHAPTER 4 

DUAL PI COMPOSITION CONTROL 

This chapter considers the application of dual PI composition controllers applied 

to the ethyl acetate reactive distillation column. The issue of configuration selection is 

discussed in Section 4.1. The approach used to tune the composition controllers is 

discussed in Section 4.2. The dual composition control results are presented in Section 

4.3. The overall discussion of the control results is presented in the end of this chapter. 

4.1 Configuration Selection 

The application of PI control to a distillation column is essentially a 5x5 control 

problem. The five variables to be controlled are the overhead column pressure, the 

accumulator and reboiler levels, and the overhead and bottoms product compositions. 

The five variables that can be manipulated in order to meet the control objectives are the 

reflux (L), distillate (D), bottoms (B), and vapor boilup (reboiler duty) flow rates (QR), 

and the condenser duty (QC). Additionally, the reflux ratio (L/D) and boilup ratios (V/B) 

may also be considered as manipulated variables. In ethyl acetate reactive distillation, the 

overhead pressure is controlled by means of vapor distillate flow (D) from the partial 

condenser, as discussed in Section 3. Hence, the vapor distillate flow is not available as a 

manipulated variable for level or composition control of the column. 

For the ethyl acetate reactive distillation column, the ethyl acetate composition in 

the bottoms, referred as bottom impurity, acts as controlled variable for bottom 
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composition loop. Acetic acid composition in the distillate, referred as overhead impurity, 

acts as controlled variable for overhead composition control loop. Acetic acid present in 

the vapor distillate of reactive distillation appears as the bottom product of the recovery 

stream and therefore directly affects the purity of the final ethyl acetate product. Hence, 

the control of overhead impurity is primary control objective for this system. 

Once the two manipulated variables that will be used to control the product 

compositions are determined, the remaining manipulated variables are used to control the 

levels in the accumulator and reboiler. Section 3.6 describes the overhead level control 

scheme for the ethyl acetate reactive distillation column. The level in the partial 

condenser heat exchanger is adjusted by means of condensed liquid and level in the 

reflux accumulator is cascaded with level in the partial condenser. This cascade level 

control scheme is used for all the configurations. The following different configurations 

can be considered for dual PI composition control scheme for ethyl acetate reactive 

distillation column. 
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Table 4.1 Dual PI composition control MV-CV pairings. 

Configuration 

(L,V) 

(L,B) 

(L,V/B) 

(L/D, V) 

(L/D, B) 

(L/D, V/B) 

Overhead 
Composition 
Loop 
L 

L 

L 

L/D 

L/D 

L/D 

4.2 Controller tuning methodology 

Manipulated Variables 

Bottoms 
Composition 
Loop 
V 

B 

V/B 

V 

B 

V/B 

Reboiler Level 

B 

V 

V-l-B 

B 

QR 

V-l-B 

Accumulator 
Level 

Cascade Loop 

Cascade Loop 

Cascade loop 

Cascade loop 

Cascade loop 

Cascade loop 

Tuning of PI controller require the values of gain and reset time. For the ethyl 

acetate reactive distillation column, ratio of dead time (Op) to time constant (T;,) is less 

than 0.5. Hence, PI controllers can be used and no derivative action is necessary. While 

an open-loop test can be used to calculate a controller gain and reset time, open-loop test 

requires a large amount of time to complete. Open-loop tuning results are significantiy 

affected by process disturbances and nonlinear behavior which makes this tuning method 

unacceptable. Luyben (1986) suggested using the Biggest Log modulus Tuning (BLT) 

method for tuning the PI control loops. However, the BLT method requires the use of 

transfer functions which are time consuming to develop and often lead to significant 

errors. 

The tuning approach used in this work uses the Autotune Variation (ATV) 

method (Astrom and Hagglund, 1984) to determine the ultimate gain and ultimate period 
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of the controller. Then, the Tyreus and Luyben (1992) controller gain and reset time were 

determined as follows. 

j^TL 

T!'--

3.22 

= 2.2P . 

Distillation control exhibits significant coupling. Since the TL tuning parameters 

were developed for non-coupled controllers, the TL tuning parameters usually resulted in 

non-optimal control, which required further tuning. A detuning factor was used to tune 

the composition controller. A detuning factor value above 1.0 made the control action 

less aggressive. A detuning factor value below 1.0 resulted in more aggressive control 

action. 

K^ K2_ 
Po 

The control of overhead impurity is the primary control objective for the ethyl 

acetate reactive distillation system. Hence, the bottom composition loop is tuned 

sluggishly for the system. An ATV test is performed for bottom composition loop to 

determine the ultimate gain and ultimate period. Then the detuning factor was used to 

tune the bottom composition loop for overdamped behavior. 

After tuning the bottom composition loop for sluggish dynamic behavior, an ATV 

test is performed for top composition loop to determine the ultimate gain and ultimate 

period. Integral of the Absolute Value of Error (lAE) for a composition setpoint change 
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was used as a criteria for determining the optimal detuning factor. It was observed that 

improved performance in terms of lAE could be obtained by adjusting the values of gain 

and reset times independently once the optimal detuning factor value was determined. 

The following series of step tests in the overhead composition setpoint were used to 

calculate the lAE used for controller tuning, 

1. At a time of 10 minutes, the overhead impurity was increased by 25% 

over the nominal impurity in mole fraction (4.0x10"'*). 

2- At a time of 2000 minutes, the overhead impurity setpoint was 

decreased by 25 % below the nominal impurity in mole fraction 

(4.0x10"^). 

3. At a time of 4010 minutes, the simulation was ended. 

lAE on composition setpoint was recorded for each configuration. Once the 

composition controllers were tuned, feed flow and feed composition disturbances were 

used to test the performance of the controller for unmeasured disturbances. 

4.3 Ethyl acetate reactive distillation PI control results 

The Dual-ended composition control tuning methodology, described earlier, was 

implemented on six control configurations. Table 4.2 lists the gain, reset times used for 

all configurations. 
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Table 4.2. Ethyl acetate reactive distillation tuning results for dual-ended PI composition 
control. Reset time is in seconds. 

Configuration 

[L,V] 

[L,B] 

[L/D,V/B] 

[L/D,V] 

[L/D,B] 

[L,V/B] 

Overhead 

Gain 

22.5 

23.5 

1475.0 

1210.0 

1651.3 

21.11 

Loop 

Reset Time 

7700.0 

10600.0 

2500.0 

2000.0 

14933.0 

7200.0 

Bottom Loop 

Gain 

9.58x10^ 

7.275 

10.5x10^ 

9.98x10^* 

4.81 

9800.0 

Reset Time 

6667.7 

18667.0 

9000.0 

6400.0 

27000.0 

9600.0 

4.3.1 Setpoint Tracking Results 

To assess the performance of the PI controller for setpoint tracking, the test 

described in the section 4.2 was conducted using simulator. The dynamic responses for 

controlled variables as well as manipulated variables for selected configurations are 

shown in Figure 4.1 (a) to 4.1 (f). The lAE control performance indices for the ethyl 

acetate reactive column overhead impurity setpoint change are given in Table 4.3. 

56 



j ^ 5.50E-04 

1 5.00E-04 
Q. 

.§ "c 4.50E-04 

•o o 4.00E-04 
(0 (0 

•^ 'Z 3.50E-04 
"* "5 
" E 3.00E-04 
•a ^ 

I 2.50E-04 

> 2.00E-04 
O 

A A.j^i_ Ar 

^ 

L,V/B 
\ 1 \/ 

• ' 
I L,B 

500 1000 1500 2000 2500 3000 3500 4000 

Time (min) 

(a) Overhead acetic acid impurity 

5.50E-04 

-p 5.00E-04 
."2 o 
g Z 4.50E-04 
o £ 
• | ^ 4.00E-04 

^ I 3.50E-04 
(0 ^ 
^ >• 3.00E-04 
2 1 
» g. 2.50E-04 
O E 

- 2.00E-04 

l V * v ^ _ _ ^ L/D.V f̂  1 L/U,V/U 
1 l_/D,B 

500 1000 1500 2000 2500 

Time (min) 

3000 3500 4000 

(b) Overhead acetic acid impurity 

Figure 4.1 Dual ended composition PI control for overhead impurity setpoint 

tracking 

57 



9.50E-04 

°- 9.00E-04 

S ••= 8.50E-04 
g> O 
O CO 
(0 . ^ 

>«-2 8.00E-04 
15 E, 
E 7.50E-04 
o 
a 
o 
°^ 7.00E-04 

500 1000 1500 2000 2500 3000 3500 4000 

Time (min) 

(c ) Bottoms ethyl acetate impurity 

3 
Q. 

9.50E-04 

9.00E-04 

0) g 
I ••g 8.50E-04 

(0 «^ 

. t7D,V/B 

- LVD.V 

-•tyD,B 

500 1000 1500 2000 2500 3000 3500 4000 

Time (min) 

(d) Bottoms ethyl acetate impurity 

Figure 4.1 Dual-ended composition PI control for overhead impurity setpoint 
tracking 

58 



1.60E-I-00 

1.40E+00 

.2 1.20E-(-00 *.» 
(0 

500 1000 1500 2000 2500 3000 3500 4000 

Time (min) 

(e) Manipulated variables for overhead composition loop. 

1.40E-02 

g> 1.20E-02 

E 1.00E-02 

5 8.00E-03 
X 

^ 6.00E-03 
cc 

4.00E-03 

yw— 
500 1000 1500 2000 2500 3000 3500 4000 

Time (min) 

(f) Manipulated variables for overhead composition loop 

Figure 4.1-Dual ended composition PI control for overhead impurity setpoint 
tracking 

59 



5.50E-I-00 

5.00E-H00 

4.50E-f00 

ED 

>, 
O 

(0 

^ 4.00E-I-00 
_3 

m 3.50E+00 

3.00E+00 
0 500 1000 1500 2000 2500 3000 3500 4000 

Time (min) 

(g) Manipulated variable for bottom composition loop 

's
ec

) 
(b

tu
; 

R
eb

o
ile

r 
d

u
ty

 

2.50E-H02 

2.10E-I-02 

1.70E-I-02 

1.30E-1-02 

9.00E+01 

5.00E-1-01 
0 500 1000 1500 2000 2500 3000 3500 4000 

Time (min) 

(h) Manipulated variable for bottom composition loop. 

Figure 4.1 Dual ended composition PI control for overhead impurity setpoint 

tracking 

60 



-o- 2.50E-03 
a> 
(0 

o 2.30E-03 

^ 2.10E-03 
CO 
S 1.90E-03 o 

E 1.70E-03 
o 

m 1.50E-03 

500 1000 1500 2000 2500 3000 3500 4000 

Time (min) 

(i) Manipulated variable for bottom composition loop 

Figure 4.1 Dual-ended composition PI control for overhead impurity setpoint 
tracking 

Table 4.3 Ethyl acetate dual PI composition control performance indices for overhead 
impurity setpoint tracking. 

Configuration 

[L,B] 

[L,V/B] 

[L/D,V] 

[L/D,B] 

[L/D,V/B] 

Overhead Loop lAE 

"^^28 

2.39 

2.68 

2.41 

4.81 

2.72 

Bottoms Loop lAE 

"6^67 

1.43 

1.26 

6.84 

2.90 

2.14 

61 



Figures 4.1 (a), (b) as well as lAE performance indices from Table 4.3 show that 

almost all the configurations show comparable control performance for the overhead acetic 

acid impurity. [L, V] and [L/D, V] configurations show comparatively sluggish 

performance for the bottoms ethyl acetate impurity. However, as discussed earlier the 

primary control objective for the ethyl acetate column is controlling the overhead acetic 

acid impurity. Hence, from the setpoint tracking results it is difficult to conclude that one 

control configuration is superior in the control performance to other configurations. 

4.3.2 Unmeasured feed rate disturbance rejection 

The ability of each control configuration to reject an unmeasured load disturbance 

was tested by introducing a 25% step change in the recycle feed flow. For dual-ended 

composition control, the feed flow step test was initiated as follows 

1. At time of 10 minutes, a step change decrease of 25% in the feed rate of 

recycle feed was introduced. 

2. At 6010 minutes, the simulation was ended. 

Riggs (2000) has discussed the application of ratio control to reduce the effect of 

feed rate disturbance on the distillation process. For distillation, all the liquid and vapor 

flow rates within the column are directiy proportional to the feed rate if the product 

purities are maintained and the tray efficiency is constant. Hence, when a feed rate change 

is measured, the manipulated variable is proportionally adjusted by means of ratio control. 

The lAE control performance indices for ethyl acetate reactive column 

unmeasured disturbance rejection test are given in the Table 4.4. Figure 4.2 (a) to (f) 
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shows selected responses for controlled variables and manipulated variables for different 

control configurations. 
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Table 4.4 Ethyl acetate dual PI composition control performance indices for unmeasured 
feed rate disturbance. 

Configuration Overhead Loop lAE Bottoms Loop lAE 

[L,V] 

[L,B] 

[L,V/B] 

[L/D,V] 

[L/D,B] 

[L/D,V/B] 

0.6215 

0.8119 

0.6194 

0.4216 

1.9708 

0.4239 

1.5132 

2.1823 

1.2389 

1.2712 

1.4112 

1.0778 
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For an unmeasured feed rate disturbance rejection, [L/D, V] and [L/D, V/B] 

configurations resulted in better control performances than other configurations. [L, V] 

and [L, V/B] configurations resulted into similar control performances in terms of 

overhead composition loop. [L/D,B] configuration resulted into the worse overhead 

control performance for an unmeasured feed rate disturbance. 

4.3.3 Unmeasured feed composition disturbance rejection 

The ability of each control configuration to maintain composition control during 

an unmeasured disturbance was tested by using a composition step change of -10% in the 

acetic acid feed at t=10 minutes. The lAE control performance indices for the ethyl 

acetate reactive column unmeasured disturbance rejection test are given in Table 4.5. The 

control responses for controlled variables and manipulated variables for different 

configurations are shown in Figure 4.3 (a) to (f). 
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Table 4.5 Ethyl acetate dual PI composition control performance indices for unmeasured 
feed composition disturbance. 

Configuration Overhead Loop lAE Bottoms Loop lAE 

[L,V] 

[L,B] 

[L,V/B] 

[L/D,V] 

[L/D,B] 

[L/D,V/B] 

0.1433 

0.1771 

0.1418 

0.1153 

0.3928 

0.1138 

1.2781 

0.8295 

1.2389 

1.2703 

1.2145 

0.9878 
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For feed composition upsets, [L/D, V] and [L/D, V/B] configurations provided 

better control performance than other configurations. These configurations provided 

similar control performance for overhead composition loop, however, [L/D, V/B] 

provided better control performance for bottom composition loop. [L/D, B] configuration 

showed larger deviation from the setpoint for an unmeasured feed composition 

disturbance. 

4.4 Discussion of results 

The primary control objective for the ethyl acetate reactive distillation column 

was to control the overhead acetic acid impurity. Hence, the for tuning of dual-PI 

controller structures, the bottom loop was detuned. This provides dynamic decoupling 

between the overhead composition loop and bottoms composition loop. Hence, the 

decentralized dual-PI controller gives satisfactory performance for overhead setpoint 

tracking as well as an unmeasured disturbance rejection. The lAE results for overhead 

composition loop indicates that almost all the configurations except [L/D,B] exhibit 

satisfactory control performances. Figure 4.1 shows that the dynamic responses for these 

different configurations for overhead setpoint tracking are also similar in nature. 

The dynamic responses for overhead impurity setpoint tracking exhibit an 

aggressive nature of controller for positive step change in setpoint for overhead impurity. 

However, for negative step change in the setpoint for overhead impurity the dynamic 

responses are sluggish in nature. This behavior can be attributed to the nonlinear nature of 

the system. 
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Based on all results for dual PI composition control of the ethyl acetate reactive 

distillation, use of the [L/D,V] and [L/D,V/B] configurations provided best overall 

performance for overhead impurity setpoint tracking and for unmeasured disturbances in 

feed composition and feed rate. 
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CHAPTER 5 

NONLINEAR MODEL PREDICTIVE CONTROL 

Model Predictive Control (MPC) is an optimal control based algorithm which 

selects manipulated variable levels to minimize the performance objective function by 

utilizing a process model. The objective function is defined as a combination of the sum 

of the square of the error from the setpoint and the change in the manipulated variables 

over a future time horizon and is evaluated using an explicit process model to predict 

future process behavior. Although chemical processes are inherently nonlinear, the most 

common approach in controller design is to express the model equations in a linear form 

using linearization about some nominal point. For highly nonlinear processes, the linear 

MPC might not provide satisfactory performance. Nonlinear Model Predictive Control 

(NLMPC) can be defined as a MPC algorithm, which employs nonlinear process model 

in the controller algorithm. This chapter discusses the NLMPC algorithm development 

for dual composition control of an ethyl acetate reactive distillation column. 

5.1 Solution Algorithm 

The Solution procedure for NLMPC involves setting up the control problem as a 

nonlinear programming (NLP) problem and solving it over the prediction horizon. It is 

necessary to simultaneously solve an optimization problem and the system model 

equations. These two procedures may be implemented either sequentially or 

simultaneously. 
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5.1.1 Sequential solution and optimization algorithm 

The sequential algorithm employs separate algorithms to solve the differential 

equations and to carry out the optimization. First, the manipulated variable profile is 

selected and the differential equations are solved numerically to obtain the controlled 

variable profile. The objective function is then determined. The gradient of the objective 

function with respect to the manipulated variable can be found either by numerical 

perturbation or by solving sensitivity equations. The control profile is then updated using 

an optimization algorithm. The process is repeated until the optimal profiles are obtained. 

This is referred as a sequential solution and optimization algorithm. 

The availability of accurate and efficient integration and optimization packages 

can permit implementation of the sequential solution and optimization algorithm with 

little programming effort. However, there are some drawbacks associated with this 

approach. The sequential solution and optimization requires the solution of differential 

equations at each iteration of the optimization. Jones and Finch (1984) found that such 

methods spend about 85% of the time integrating the model equations in order to obtain 

gradient information. This can make the implementation of this algorithm 

computationally expensive for cases involving a large number of model equations. The 

gradient information required for the optimization procedure is often obtained through 

numerical differentiation, as the analytical derivatives are not available for the highly 

nonlinear model equations involving complicated thermodynamic relations. To obtain the 

gradients using finite difference typically involves differencing the output of an 

integration routine with adaptive step size. Gill et al. (1981) pointed out that the 
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integration error is unpredictable and hence differencing output of an integration routine 

greatly degrades the quality of the finite difference derivatives. It is also difficult to 

incorporate the constraints on state variables with the use of the sequential solution and 

optimization approach. (Rawlings and Meadows, 1997). 

5.1.2. Simultaneous solution and optimization algorithm 

A simultaneous solution and optimization algorithm involves the model equations 

appended to the optimization problem as equality constraints. Then the NLP problem is 

posed to optimize the objective function such that 

(a) the (discretized) model differential equations are satisfied, and 

(b) the constraints on states and manipulated variables are met. 

This can greatly increase the size of optimization problem, leading to a tradeoff between 

the two approaches. Rawlings and Meadows (1997) reported that for small problems with 

few states and a short prediction horizon, the sequential solution and optimization 

algorithm is probably a better approach. For larger problems, the simultaneous solution 

and optimization approach is more reliable. 

The simultaneous solution and optimization approach involves discretization of 

the model differential equations and their approximation by a set of algebraic equations. 

This can be achieved using orthogonal collocation on finite elements. The details of 

orthogonal collocation on finite elements are discussed in the next section. The 

simultaneous solution and optimization is presented in the following discussion. 
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5.1.2.1 Orthogonal Collocation 

The model differential equations in the time domain are converted into an 

approximating set of algebraic equations by orthogonal collocation (Finlayson, 1980). A 

cubic polynomial (i.e., three internal collocation points) is used for the algebraic equation 

approximation. 

In orthogonal collocation, the trial function is taken as a series of orthogonal 

polynomials and the collocation points are taken as the roots to one of those polynomials. 

In many of these problems the solution is not a symmetric function of t, (where t is the 

time coordinate of dynamic model), i.e., it is a function of odd and even powers of r. To 

do this we construct orthogonal polynomials that are functions of t", where 

n = 1,2,3..., N, N - order of polynomial. One choice is 

y = t + t{\-t)Y,a,P^_,(.t). (5.1) 
1=1 

an equivalent choice for Eq. (5.1) is 

N+2 

y = I^,/^-,(0. (5-2) 
/=i 

Eq. (5.2) can be simplified as follows: 

N+i 

y = Y^df-\ (5.3) 
1=1 

We define the polynomials to be orthogonal with the condition 

\W{t)P,{t)P„{t)dt = 0 k<m-\. (5.4) 
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Again, we take the first coefficient of the polynomial as one, so that the choice of the 

weighting function W(r) completely determines the polynomial, and hence the trial 

function and the collocation points. 

We take the collocation points as the Â  roots of the polynomial P^ (0 = 0- These 

roots are between zero and one. The collocation points are then ?, = 0 , t2,tj,—,tN+i and 

r̂ î = 1 , where, t^-0 and r̂ ,̂ =1 are the boundary collocation points and t2,t^,.-;tN 

are interior collocation points. Eq. (5.3) can be written at a collocation point j , 

i - l y{tj) = Y.d,t;-'. (5.5) 
1=1 

Differentiating Eq (5.5) with respect to t,we get 

^ ( , , ) = | ; ( i - i M i , " . (5.6) 
dt ,=1 

Now differentiating Eq. (5.6) with respect to r, we get 

^!Z^ = X(/-1)(/-2K.-. (5.7) 
dt ,=1 

We can write Eqs (5.5), (5.6) and (5.7) in matrix form as follows: 

y = Qd ^ = Cd ^ = W . (5.8) 
dt dt 

where 

Q^^=tr c,=(/-i>;-^ D, = (f-i)(/-2>;-

where 

/ = l,2,3...,iV + 2 

; = l,2,3...,/V + 2 

(5.9) 
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Solving for d gives, 

-j- = CQ-'y = Ay ^ = DQ-'y = By. (5.10) 

Thus, the orthogonal collocation method can be used to convert the differential equations 

into algebraic equations. Stiff problems are solved by using multiple subintervals along 

the axial direction, i.e., time axis in the present discussion. Dependent variables values 

are equated at the first and last collocation points of consecutive intervals. Low order 

polynomials (e.g., quadratic or cubic) are used for the approximation resulting in a set of 

algebraic equations. This is because higher order polynomial tends to oscillate in the 

intervals between the collocation points. Therefore in discretization of model differential 

equations, a cubic polynomial is used for algebraic approximation. 

5.1.2.2 Determination of collocation points for a cubic polynomial. 

Let W(t) = 1, and the polynomials be 

p^=l P^=\ + bt, P2=\ + ct + dt\ Pj=\ + et + ft^+gt\ (5.11) 

Pi is found by requiring the orthogonality condition, 

1 1 

IW(t)PQP,dt = 0 or ji\ + bt)dt = 0, (5.12) 

0 0 

which makes b = -2. Then Pj is found from 

1 1 

jW{t)P,P2dt = 0 \Wit)PAdt = 0, (5.13) 

I.e., 
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(5.14) l(l + ct + dt')dt = 0 j{l-2t)il + ct + dt')dt^0 
° 0 

which makes c = -6,d = 6. 

Then P, is found by requiring the orthogonality condition, 

lW{t)P,P^dt = 0 \Wit)P^P^dt = 0 ]wit)P2P,dt = 0, (5.15) 

I.e., 

j{l + et + ft^+gt')dt = 0 
0 

1 

jil~2t)(\ + et + ft'+gt')dt = 0 (5.16) 
0 

1 

j(l-6t + 6t^)i\ + et + ft^+gt')dt = 0 
0 

which makes e = -12, / = 30, g = -20. 

The polynomials are PQ = 1, P, = l - 2 r , P2=l-5t + 5t\ P^ =\-]2t+ 30t^-20t^ 

The roots of the cubic polynomial P^(t) = 0 are 0.1127,0.5,0.8873, so these are the 

internal collocation points along with t = 0 and r = 1 as the boundary collocation points. 

In this study, all the differential equations are approximated as a set of algebraic 

equations using three internal collocation points and one on the boundaries of each finite 

element. Three internal collocation points are illustrated in Figure 5.1. If the element is 

scaled so that /, = 0 and t^=l, then the node points are given 

by{f,,f2,^3,^4,/si ={0,0.1127,0.5,0.8873,1.0}, which are the roots of the third-order 
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Lengendre polynomial, augmented by element endpoints. If t^ ̂ 0 and t^^\, then a 

linear change of variable is necessary to transform the time interval to [0, 1]. When the 

dynamic model is time invariant, the only correction necessary is to scale the right hand 

side of equation .v = /(.v,»,Oby /, - ? , . 

tl t2 

Refer to Equation (5.16), 

t3 U 

Figure 5.1 Collocation element 

Q = 

I tj 

1 tj 

1 f3 

1 ' 4 

1 f j 

2 

1 
2 

2 ' 
2 

'3 
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U 
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2 ' 
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^ 4 -
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(5.17) 

Therefore, 

C = 

0 

0 

0 

0 

0 

1 

1 

1 

1 

1 

2f, 

2^2 

2^3 

2^4 

2^5 

3', ' 
3(,^ 

%' 

3 ' / 

3 ' / 

41,' 

4 ' , ' 
4(3' 

41 / 

41.' 

(5.18) 
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D = 

0 0 2 6?, 12r, 

6r, l2r. 0 

0 

0 

0 

0 

0 

0 

0 

2 

2 

2 

2 

6^3 12^3 

6^4 12^4 

6/, 12^ 

(5.19) 

This gives 

A = 

-13 14.7883 -2.6667 1.8784 - 1 

-5.3238 3.8730 2.0656 -1.2910 0.6762 

1.5 -3.2275 0.0 3.2275 -1.5 

-0.6762 1.2910 -2.0656 -3.8730 5.3238 

1 -1.8784 2.6667 -14.7883 13 

(5.20) 

Thus, using the matrix A , we can approximate the dynamic equation of state x balance 

follows: 

as 

dxj 

dt =ZV, 
1=1 

where 

X- - state variable at y"" collocation point (7 = 1 to 5), 

ind 
e.g., at 2 collocation point (y = 2), the above equation becomes 

dx 

dt 
/ i ' j i ^ i T' IXiyy^ry T' i i ^ ^ ^ T I IXj*^ A I~ Il.'ycJie • 

(5.21) 

(5.22) 

Let the i"' state at node j be represented by A}, Let the notation xJ. represents the 

entire state vector at node j . With constant control, an approximate solution to the 

differential equation can be obtained by solving the following nonlinear equation: 
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AX = F{X,u) (5.23) 

where. 

X = 

1,1 -^1,2 

•^2.1 .^2,2 

4,1 -^4,2 

'5,1 -^5,2 

'2,«n 

"-3,«n 

5,nn 

(5.24) 

F(X,u) = f^ {xl^,u,t^) 

f^(xl,,u,t^) 

(5.25) 

Since we cannot use only three internal collocation points to calculate the state 

profiles for the entire time domain, we extend the orthogonal collocation method to a set 

of finite elements in time direction, with time derivative approximated by cubic 

polynomials defined on each element. This situation is illustrated in Figure 5.2. 

The use of orthogonal collocation on finite elements requires incorporating an 

indexing scheme to provide the information on the states and location of state in a finite 

element. 

Orthogonal collocation on finite element applies orthogonal collocation at M 

interior points in each subinterval. This method is more desirable than the standard 

orthogonal collocation because better results are obtained with a set of low order 
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polynomials than with a single higher order polynomial. Also, this approach addresses 

the stiffness issue for the differential/algebraic equations, since the integration process 

can be custom designed if so desired. In orthogonal collocation on finite elements the 

process equations are integrated independently on each sub interval, each having its own 

constant set of independent variables. These integrations are joined by connection 

equations. These connection equation specify that the value of each of the dependent 

variables at the first and last collocation points of each subinterval are equal. 

t4(N-l)+l t4N+l tl t2 t3 t4 ts t6 t7 ts t9 

Figure 5.2: Collocation on finite elements 

In the matrix form, the orthogonal collocation on finite element can be 

represented as 

AX=F{X,U) (5.26) 
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x = 

M,2 

2,2 

3,2 

•^4,1 •^4,2 

•'^5«-2,l -^'5«-2,2 

5/1.1 

A = 

"•Sn,2 

^i.nn 

4,nn 

5./m 

'•5«-2,i 

5n,nn 

(5.27) 

(5.28) 

F ( Z , M , , M 2 ' " ' ' " « - l ) 

J yXj*,11^,12) 

f{xl,,UQ,t^) 

J \X^,,UQ,t^ ) 

f^(xl,,u^,t^) 
"5^ 

••I '^e^ 

J V . ^ l l , * ' " 2 ' 1 1 / 

/ ( . ^ 5 / 1 - 1 , * ' " n - l ' ^ 5 « - l ) 

/^(4«,*.««'^5J 

(5.29) 

[ T T T \ 

M, , M 2 , • • • , M„ J 
(5.30) 
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5.2 Formation of optimization problem 

The simultaneous solution and optimization algorithm is applied to the following 

nonlinear optimization problem: 

mm(p{x,u). (5.31) 

Here, the objective function is defined symbolically, the formulation of objective 

function is described in the Section 5.3. 

The process is described by the following differential/algebraic equations: 

dt '^ ' '^' (5.32) 
y = g{x,u;p) 

where, y and u are controlled and manipulated variable vectors, respectively, x is the state 

variable vector and p is the set of model parameters, which may include disturbances. 

The orthogonal collocation on finite elements is used to convert the differential equations 

into an approximating set of algebraic equations. For simplicity of explanation; consider 

that the prediction horizon of n sampling periods corresponds to n finite elements -one 

element for each sampling period, as shown in the Figure 4.1. The Control horizon is p 

sampling periods, xij is the state vector at the j'*" collocation point on the i* finite element 

and Ui is the manipulated variable on the i* finite element. If M collocation points 

(including two end points) are used on each finite element, the NLP problem can be 

formulated as shown below: 

n M 

minYYvv^.^ (5.33) 
1=1 ;=l 



subject to: 

(i) Model differential equations(A contains the first-derivative weights at the 

collocation points) 

^ 1 1 " 

•^,2 

_-^ i iW _ 

= 

f(xn,u-;p) 

/ ( j c , 2 ' " i ; p ) 

f(xM,u.;p) 

i = l,---,n (5.34) 

Since xu is known from the estimator or the previous element, the first equation in 

Eq.(5.34) is redundant and not used as a constraint, 

(ii) Model algebraic equations 

y,j = g(x,j,u.;p) i = \,---,n; j = l,---,M (5.35) 

(iii) Initial condition and continuity of the state variables 

Xj, = initial condition 

'^;' ^ ""'" (5.36) 

(iv) Definition of control horizon 

Ui=UM i = p,---,n-l forn> p (5.37) 

(v) Bounds on state variables 

x,<x^.<x^ / = l , - , « ; 7 = 1 , - ,M (5.38) 

(vi) Bounds on the outputs 

yi<yy<y^ / = l,---,«; i = \,--,M (5.39) 

(vii) Bounds on manipulated variables 
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Ui<u,<u^ i = l,---,n (5.40) 

(viii) Bounds on changes in the manipulated variables 

K-",>i^A«,™J i = \,-,p-l (5.41) 

The constrained NLP problem is solved using SQP, and the first manipulated move is 

implemented. This process is repeated at every control interval. 

5.3 Feedback 

The most common feedback method in MPC is to compare the measured output 

of the process to the model prediction at time k to generate a disturbance estimate 

A m m 

d - yk ~ yk ^ i" which y^ and ŷ . represent the process measurement and model 

prediction, respectively. The formation of MPC objective function will involve the 

disturbance term, which is added to the output prediction over the entire prediction 

horizon. Hence, the modified objective function can be given as: 

^ - ^ [ ^ . / - ( j ^ . ^ - ^ O l ^ + i ; e[A«, , , J^ (5.42) 
y=o y=o 

This procedure assumes that the differences observed between the process output 

and the model prediction are due to additive step disturbances in the output. These 

disturbance terms are assumed to remain constant over the prediction horizon. This 

choice of disturbance model offers several practical advantages (Medows and Rawlings, 

1997): 
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a. It accurately models setpoint changes, which often enter feedback loops as step 

disturbances. 

b. It approximates slowly varying disturbances. Since errors in the model can appear as 

slowly varying output disturbances, it provides robustness to model error. 

c. It provides zero offset for step changes in setpoint. 

Feedback through the estimation of a step disturbance, coupled with a linear step 

response model, has been extensively applied in industrial applications. Garcia and 

Morari (1982) have analyzed the stability and robustness for linear unconstrained 

systems. 

Feedback through differencing model prediction and measurement does not require a 

state-space description. Linear MPC methods used in the industry do not use state-space 

model and incorporate the disturbance directiy into the MPC objective function. Using a 

state-space model, conventional MPC feedback can be shown to be a particular form of a 

state observer for the resulting system: 

x,^i =f{x,,u^) 

dk.,=d, . (5.43) 

yk =g(^k) + dk 

A design of state observer is not considered in the scope of present studies. 

Inferential calculations are used to obtain the information of the outputs of the system, 

i.e., top and bottom impurity of the column. The details of inferential calculations of top 

and bottom impurities as function of states of the system (i.e., tray temperature) are 

provided in the Section 3.8. 
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5.4 Ethvl acetate reactive distillation NLMPC results 

The NLMPC control algorithm described in previous sections was applied for 

dual-ended composition control of ethyl acetate reactive distillation column. The 

previous PI dual-ended composition control results indicated that [L/D, V] configuration 

provided satisfactory control performance for setpoint tracking as well as unmeasured 

disturbance rejection. NLMPC was applied using [L/D, V] configuration to determine 

the benefits in control performance considering the increased complexity of control 

algorithm using NLMPC. The model development for an ethyl acetate reactive 

distillation is described in Chapter 3. This model was discretized by means of the 

orthogonal collocation on finite elements, as described in the Section 5.1.2. This 

discretized model was used in NLMPC control algorithm. For application of NLMPC to 

the ethyl acetate reactive distillation column, level controls are not included in the 

NLMPC controller. PI level controls as discussed in the Section 3.6 are used for the 

implementation of NLMPC. 

5.4.1 Selection of Tuning Parameters 

The tuning parameters that have a significant effect on MPC performance are the 

prediction horizon, control horizon, sampling interval and penalty weight matrices. A set 

of heuristics based on the linear systems, numerical simulations are normally used to 

select the final tuning parameters. 

a. Sampling Interval: For stable, minimum phase systems, stability does not depend 

on sampling interval. To ensure good closed-loop performance, the sampling 
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interval should be small enough to capture adequately dynamics of the process, 

yet large enough to permit the online computations necessary for implementation.. 

Marlin (1995) has provided a general rule that the control interval should be 

selected such that 

At<Q.Q5{e^+T^) (5.44) 

to obtain control performance approaching that of continuous control for which 

dp and Tp are the first order plus deadtime (FOPDT) model parameters of the 

process. An ethyl acetate reactive distillation column under consideration exhibits 

a very large open loop time constant over 500 minutes. Hence, the sampling 

interval or control interval was chosen as 20 minutes, which satisfies the criteria 

described in the Equation (5.44). The same control interval was used for dual-

ended PI controller results, 

b. Prediction Horizon: For linear systems, the choice of prediction horizon is 

normally decided by the time for steady state. The literature provides selection 

criteria for prediction horizon that assures the closed-loop stability. For nonlinear 

systems, there is no definite selection criteria provided. Hence, the simulation 

results are normally used for determination of prediction horizon for NLMPC. 

With simultaneous solution and optimization approach, the increase in size of 

prediction horizon increases the size of constrained nonlinear optimization 

problem. Hence, the advantages of longer horizons are outweighed by the 

increase in computations required. 
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In order to select the appropriate value for the prediction horizon, closed 

loop simulations were carried out for setpoint change in overhead impurity. The 
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Figure 5.3 Effect of the prediction horizon on NLMPC performance 
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performance of primary controlled variable i.e. overhead acetic acid impurity was 

observed to determine the value of the prediction horizon. It was observed that 

small values of prediction horizon show oscillatory or unstable responses. Figure 

5.3 shows that the prediction horizon of 80 sample interval provide satisfactory 

control performance. 

c. Control Horizon: Linear systems results indicate that shortening the control 

horizon relative to the prediction horizon tends to produce less aggressive control 

actions, less sensitivity to disturbances (Garcia and Morari, 1982). For nonlinear 

systems, the selection of control horizon issue has not been discussed in the 

literature. Hence, simulation results are used for determination of control horizon. 

Figure 5.4 shows the effect of varying control horizon length on the closed loop 

performance of NLMPC for overhead impurity setpoint change. The prediction horizon 

was selected as 80 sample intervals. Shorter control horizon provide sluggish control 

response for overhead impurity setpoint tracking. It was observed that after certain value 

of control horizon length, the improvement in control performance was not significant to 

justify the additional computational efforts required for higher value of control horizon. 

Hence, the control horizon value of 10 sample intervals was selected. 

Secondly, the value of control horizon normally decides the number of degrees of 

freedom for the optimization problem that is solved at each sample interval. The 

computational effort for the optimization problem increases with number of degrees of 

95 



freedom, hence computational effort might provide some limitations for selection of 

control horizon. The generalized algorithm described 
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Figure 5.4 Effect of control horizon on NLMPC performance 
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in the Section 5.2 shows that value of control inputs are taken as piece wise constant 

functions. In such case, if the value of the control horizon was chosen as 'm' sample 

interval, then optimization problem will have 'm x number of manipulated variables' as 

degrees of freedom. However, instead of considering each sample time as a equally 

spaced node for manipulated or input variable, one can chose fewer number of unequally 

spaced nodes for manipulated variables over the control horizon. The optimization 

problem is solved to determine the values of input variables at these fewer number of 

nodes. Then the values of input variables at each sample interval can be determined by 

interpolation. This approach is expected to improve the computational efficiency to some 

extent. The simulation results were used to assess the benefits of above approach. 

Figure 5.5 shows the computational time versus number of nodes considered for 

optimization. The computational time on the y-axis is normalized with respect to the 

computational time while considering all equally spaced nodes for each sample interval. 

The figure shows the results for the case for which the control horizon was chosen as 12 

sample interval. The control input profile over the 12 sample interval was discretized by 

means of unequally spaced fewer number of nodes for control input. The optimization 

was carried out for determining the values of input variables at those node values. It was 

observed that around 20% improvement in the computational requirement can be 

achieved by considering a smaller number of unequally spaced nodes for optimization. 
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Figure 5.5: Effect of number of degrees of freedom on computational time for 
optimization 

d. Equal concern error: For MMO control, the controlled variables may have 

different magnitudes as well as different engineering units. Moreover, from a 

control point of view, some variables have more priority than the others. The 

equal concerned errors are used to normalize the engineering unit values and 

prioritize the controlled variables. 

In ethyl acetate reactive distillation the primary control objective was to 

control the overhead acetic acid impurity. Hence, in objective function for 

nonlinear optimization appropriate weights need to be provided for overhead and 

bottom impurities. To determine the appropriate value of equal concerned errors, 

closed loop simulations were performed for overhead impurity setpoint change. 

The prediction horizon of 80 and the control horizon of 10 sample interval was 
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chosen for these simulations. Equal concerned error ratio of 10:1 corresponding to 

normalized values of controlled variables showed satisfactory peroformance. 
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Figure 5.6 Effect of equal concern error (ECE) on NLMPC performance 
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-̂ Move suppression factor: Move suppression factors are used to adjust the 

aggressiveness of the MPC controller with respect to each manipulated variable. 

Move suppression factors are analogous to the detuning factor used in PI control. 

After weighting is set based on product importance, move suppression factors are 

adjusted to select the aggressiveness of the controller tuning. Minimum lAE for 

setpoint changes described for tuning PI control was used as the criteria for 

determining the optimal move suppression factors for NLMPC. Figure 5.4 shows 

the effect of move suppression factor for the setpoint change for overhead 

composition loop. 
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Figure 5.7 Effect of move suppression factor on NLMPC performance for overhead 
impurity set point tracking. 
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Figure 5.7 Effect of move suppression factor on NLMPC performance for overhead 
impurity set point tracking. 

Table 5.1 Tuning parameters for NLMPC with perfect model 

Prediction Horizon 80 

Control Horizon 10 

Equal concern error ( Overehead Imputiy: Bottom impurity) 10:1 

Move suppression factor 

Overhead manipulated variable 

Bottom manipulated variable 

0.03 

0.05 

101 



5.4.2 Setpoint tracking results for NLMPC 

Step changes in setpoints (see chapter 4) were used to determine move 

suppression factors which minimized the lAE. Table 5.2 shows the lAE for NLMPC and 

PI for an overhead impurity setpoint change. Figure 5.8 (a) to (d) shows the dynamic 

responses of the controlled variables and manipulated variables for the setpoint tracking 

test. 

Table 5.2 Ethyl acetate NLMPC control performance indices for overhead impurity 
setpoint tracking. 

Configuration Overhead loop lAE Bottoms loop lAE 

[L/D,V] NLMPC 091 2^4 

[L/D, V] PI 2.41 6.84 
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5.4.3 Unmeasured feed rate disturbance rejection 

Feed disturbance rejection capabilities of NLMPC were tested by introducing a 

25% step change in recycle feed flow. The test was the same used for PI feed rate step 

disturbance testing. The feed disturbance was considered unmeasured and not modeled in 

the NLMPC controller. The L\E control performance indices for ethyl acetate reactive 

column calculated over 2000 minutes of closed-loop response for unmeasured disturbance 

rejection test are given in the Table 4.2. Figure 4.6 (a) to (d) shows selected responses for 

controlled variables and manipulated variables for different control configurations. 

Table 5.3 Ethyl acetate NLMPC control performance indices for unmeasured feed rate 
disturbance rejection 

Configuration Overhead loop lAE Bottoms loop lAE 

[L/D,V] NLMPC 0.188 0.462 

[L/D, V] PI 0.422 1.271 
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5.4.4. Unmeasured feed composition disturbance rejection 

Feed composition disturbance rejection capabilities of NLMPC were tested using 

a composition step change of -10% in the acetic acid feed at t=10 minutes. The feed 

composition disturbance was considered unmeasured and not modeled in the NLMPC 

controller. The L\E control performance indices for ethyl acetate reactive column 

calculated over 2000 minutes of closed-loop response for unmeasured feed composition 

disturbance rejection tests are given in Table 5.4. Figure 5.10 (a) to (d) shows responses 

for controlled variable and manipulated variables. 

Table 5.4 Ethyl acetate NLMPC control performance indices for unmeasured feed 
composition disturbance rejection 

Configuration Overhead loop lAE Bottoms loop lAE 

[L/D,V] NLMPC 0.117 0.331 

[L/D, V] PI 0.247 0.866 

108 



^ 4.02E-04 

!_ 4.00E-04 

•- -c 3.98E-04 
2 o 
^ Z 3.96E-04 
o 2 

• •§ "o) 3.94E-04 
^ o 
TJ E 3.92E-04 
re ^^ 
5 3.90E-04 
0) 

g 3.88E-04 

500 1000 

Time (min) 

1500 2000 

(a) Overhead acetic acid impurity 

8.20E-04 

3 
Q. 
E 

« ? 
2 = 
o 2 re .^ 
>. « 
£ o 
v E 
(0 ^ ^ 
E 
o 
ts 
o 

CQ 

8.10E-04 

8.00E-04 

7.90E-04 

7.80E-04 

7.70E-04 

500 1000 

Time (min) 

1500 2000 

(b) Bottoms ethyl acetate impurity 

Figure 5.10 Comparison between NLMPC and PI controllers for dual-ended composition 
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5.4.5 Effect of model mismatch on NLPMC performance 

The NLMPC algorithm incorporates the nonlinear mathematical model of the 

process. The mathematical model developed for the plant process never be perfectly 

accurate. For example, there is some level of uncertainty involved in the determination of 

kinetic or thermodynamic parameters used for the model development. Hence, these 

parameters like rate constants, equilibrium constants, and tray efficiency will be a source 

of model mismatch between model and actual plant. Secondly, the models might not be 

updated with respect to changes in certain characteristics of the plant. For example, 

catalyst deactivation over a time period can change some of the kinetic parameters of the 

system. This will cause the process-model mismatch. 

The ability of NLMPC to handle the model mismatch was tested by using 

inaccurate model in terms of the reaction equilibrium rate constant. A 5% and 25% 

difference in the equilibrium constant values were used to test the effect of process / 

model mismatch. 

5.4.5.1. Effect of process / model mismatch on tuning of NLMPC 

An Ethyl acetate reactive distillation process is highly nonlinear. Hence, 

process/model mismatch causes larger deviations in the manipulated values in order to 

keep the plant controlled variables at their setpoint. This indicates that there may be a need 

for retune the NLMPC controller in presence of process/model mismatch. It is advisable to 

tune the controller for higher magnitude of model mismatch. 

The introduction of error in equilibrium reaction constant caused no significant 

difference in open loop time constant for the system. Hence, the value of the prediction 
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horizon was not expected to vary much. Closed loop simulations were carried out as 

discussed in 5.4.1 to determine the value of the prediction horizon. The prediction horizon 

of 80 sample times was selected for NLMPC in presence of process/model mismatch. In 

similar fashion the control horizon was selected as 15 sample interval. The equal 

concerned error (ECE) was kept 10:1 same as the case without any model mismatch. The 

model mismatch causes the changes in manipulated variables of the model from their 

corresponding values in the plant. This causes the deviation in the controlled variables 

from their desired setpoints. Move suppression factor adjusts the aggressive ness of the 

controller. Hence, for the reactive distillation control in presence of model mismatch, 

move suppression values were increased to 0.045 for overhead composition loop and 

0.055 for bottom composition loop. 

Table 5.5 Tuning parameters for NLMPC with 25% process/model mismatch 

Prediction Horizon 80 

Control Horizon 15 

Equal concern error ( Overhead Impurity: Bottom impurity) 10:1 

Move suppression factor 

Overhead manipulated variable 0.045 

Bottom manipulated variable 0.055 

Figure 5.11 (a) to (d) shows the effect of model mismatch for overhead impurity 

setpoint tracking. Figure 5.12 (a) to (d) shows the effect of model mismatch for feed 
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composition disturbance rejection. Results of Figure 5.11, Figure 5.12 and Figure 5.13 

show that the NLMPC can handle the process-model mismatch in satisfactory way. 
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The L\E performance indices for overhead setpoint tracking, unmeasured feed rate 

disturbance rejection and unmeasured feed composition disturbance rejection are given in 

Table 5.6, Table 5.7, and Table 5.8, respectively. The lAE for overhead setpoint tracking 

is determined for closed loop simulation of 800 minutes and lAE for disturbance rejection 

tests are determined for closed-loop simulation of 2000 minutes. 

Table 5.6 Effect of model mismatch on NLMPC control performance indices for overhead 
impurity setpoint tracking 

Configuration Overhead loop lAE Bottoms loop lAE 

[L/D,V]PI 0.855 1.248 

[L/D, V] NLMPC-Perfect model 0.325 0.621 

[L/D, V] NLMPC- 5% mismatch 0.468 0.6388 

[L/D, V] NLMPC-25% mismatch 0.588 1.0459 

Table 5.7 Effect of model-mismatch on NLMPC control performance indices for 
unmeasured feed rate disturbance rejection 

Configuration Overhead loop lAE Bottoms loop lAE 

[L/D,V] PI 0.422 1.271 

[L/D, V] NLMPC- Perfect model 0.188 0.462 

[L/D, V] NLMPC-5% mismatch 0.381 0.739 

[L/D, V] NLMPC- 25% mismatch 0.541 1.104 
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Table 5.8 Effect of model-mismatch on NLMPC control performance indices for 
unmeasured feed composition disturbance rejection 

Configuration Overhead loop lAE Bottoms loop lAE 

[L/D,V] PI 

[L/D, V] NLMPC- Perfect model 

[L/D, V] NLMPC- 5%̂  mismatch 

[L/D, V] NLMPC- 25% mismatch 

5.5 Discussion of results 

0.247 

0.117 

0.213 

0.324 

0.866 

0.331 

0.393 

0.514 

The application of NLMPC using the [L/D, V] configuration for the control of the 

ethyl acetate reactive distillation column is discussed in this chapter. Section 5.4.1 

describes the effect of the tuning parameters on the closed-loop performance of NLMPC. 

Figure 5.3 shows that using a longer prediction horizon was necessary for stability and 

performance of NLMPC. The control horizon determine the number of manipulated 

moves in the future to be calculated by the optimization algorithm at each control 

interval. Hence, the control horizon determines the number of degrees of freedom for the 

optimization problem. The choice of the control horizon was based on the closed loop 

performance and computational requirements for solving the optimization problem. The 

equal concem errors prioritize the controlled variable for the MMO control system. For 

ethyl acetate reactive distillation, the primary control objective was to control the 

overhead acetic acid impurity. Hence, values of equal concern errors were determined 

such that the primary controlled objective is satisfied. The values of move suppression 

factors were determined by minimizing the lAE for overhead impurity setpoint changes. 
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The closed-loop performance of NLMPC was shown to be superior for overhead 

impurity setpoint tracking compared to dual-ended PI composition control. The feed rate 

disturbance as well as the feed composition disturbance were used to assess the 

performance of NLMPC in presence of unmeasured disturbances. Figure 5.9 and 5.10 

show that NLMPC was able to handle the unmeasured disturbances with less deviation 

from the setpoint and faster settiing time than the PI controller.. 

Each of the closed-loop dynamic responses for the NLMPC controller have 

shown small fluctuations over the duration of the simulation. This might be attributed to 

the accuracy tolerance for the nonlinear optimizer. Moreover, around 25% of the 

gradient information for the optimizer was obtained thorough finite difference 

approximations. Gill (1998) has pointed out that the accuracy and reliability of nonlinear 

optimization decreases with the use of finite difference approximations for gradient 

information. 

The ability of NLMPC to handle the model mismatch was tested by introducing 

errors in the reaction equilibrium constant. The process-model mismatch of 5% and 25% 

difference in the equilibrium constant values were used. It was observed that the 

presence of process-model mismatch lead to retune the NLMPC controller. The NLMPC 

controller was tuned for 25 % model mismatch, case which ensures the tuning for a 

larger magnitude of process-model mismatch. As the presence of model mismatch 

caused no significant difference in the open-loop time constant for reactive distillation 

system, the value of prediction horizon used in case of perfect model case was not 

changed. However, a larger value of the control horizon was used for the application of 
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NLMPC with model mismatch case to obtain the satisfactory closed loop performance. 

Due to the highly nonlinear nature of the reactive distillation system, the model 

mismatch caused deviations in the manipulated variables in order to keep the plant at 

desired setpoints. It was observed that in the case of 25% model mismatch, the 

controlled variables show large deviation from setpoints before returning sluggishly to 

the desired setpoints as shown in the Figure 5.12 (d). The NLMPC control performance 

for overhead impurity setpoint tracking as well as unmeasured disturbance rejection has 

shown the ability of NLMPC to handle the process-model mismatch. 

The improved control performance for NLMPC was obtained by using much 

more complicated algorithm and requiring more computational effort compared to a 

conventional PI controller. Efforts were made to reduce the computational burden of 

NLMPC algorithm. Some suggestions in this area are provided in Chapter 6. 
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CHAPTER 6 

CONCLUSIONS AND RECOMMENDATIONS 

6.1 Conclusions 

Reactive distillation combines both separation and reaction in one unit. Control of 

reactive distillation is a challenging problem due to process nonlinearity, complex 

interactions between vapor-liquid equilibrium and chemical kinetics. The presence of 

multiple steady states and the highly nonlinear nature of reactive distillation may impose 

limitations on use of linear controllers. Hence, in this study the performance of nonlinear 

model predictive control (NLMPC) was assessed for the control of a reactive distillation 

column. The control of ethyl acetate reactive distillation column was selected for this 

study. A rigorous tray-to tray steady state as well as dynamic model was developed. The 

traditional decentralized PI controls with multiple SISO loops were compared with 

NLMPC via rigorous model based simulation for the ethyl acetate column. 

The ethyl acetate reactive distillation system exhibits highly nonlinear nature. The 

steady state gain analysis was performed to analyze the effect of different manipulated 

variables on the control variables of the system. 

The primary control objective of the ethyl acetate reactive distillation column was 

identified as the overhead acetic acid impurity composition. The during tuning of dual-PI 

composition controllers, the bottom composition loop was detuned. The dual-PI 

composition control of six different control configurations namely [L,B], [L,V], [L,V/B], 

[L/D,B], [L/D,V], and [L/D,V/B] were studied. All control configurations were tuned for 
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overhead impurity setpoint change and tested for control performance using feed 

composition and feed rate changes. 

The overall results for dual-PI composition control shown satisfactory control 

performance for each configuration. Detuning of bottom composition loop provide the 

dynamic coupling between overhead and bottom composition loop. This enhances the 

control performance for overhead composition loop, which is the primary process 

objective for this system. Use of [L/D,V] and [L/D,V/B] provided best overall 

performance for overhead impurity setpoint tracking as well as for unmeasured 

disturbances in feed composition and feed flow. 

An algorithm was developed for nonlinear model predictive control (NLMPC). 

The solution procedure for NLMPC involves setting up the control problem as a 

nonlinear programming (NLP) problem and solving it over prediction horizon. A 

simultaneous solution and optimization approach was selected for implementation of 

NLMPC. The orthogonal collocation on finite elements method was used to discretize the 

dynamic model equations. These discretized model equations were appended as 

constraints for nonlinear optimization problem. The discretization of model equations 

results in a large-scale sparse system of nonlinear algebraic equations. A sparse nonlinear 

optimization package (SNOPT) was used for solving nonlinear optimization problem at 

every sample interval. 

The developed NLPMC algorithm was applied for dual-ended composition 

control of the ethyl acetate reactive distillation using [L/D,V] configuration. The closed 

loop simulations were used to determine the tuning parameters such as the prediction 
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horizon, control horizon, equal concerned error and move suppression factor. The effect 

of each tuning parameter on the closed loop control performance was analyzed before 

making the final selection of tuning parameters. The performance of NLMPC for dual 

ended composition control was tested for overhead impurity setpoint tracking and for 

unmeasured disturbances in feed composition and feed rate. 

The control peri'ormance of NLPMC for overhead impurity setpoint tracking as 

well as for unmeasured disturbances in feed composition and feed flow was shown to be 

superior compared to dual-PI composition control. However, these results are pertaining 

to only [L/D,V] configuration. 

The ability of NLMPC to handle the model mismatch was tested by introducing 

errors in the reaction equilibrium constant. The process-model mismatch of 5% and 25% 

difference in the equilibrium constant values were used. The effect of model mismatch on 

the tuning parameters for NLMPC was analyzed via closed loop simulations. The 

controller performance in presence of model mismatch was tested for overhead impurity 

setpoint tracking and for unmeasured disturbances in feed composition. It was shown a 

satisfactory performance of NLMPC in presence of process-model mismatch. 

6.2 Recommendations 

This study is an attempt to assess the performance of nonlinear model predictive 

control (NLMPC) for the control of reactive distillation column. An attempt is made to 

develop the algorithm for NLMPC which can be applied for nonlinear models of the 

processes. Following recommendations are made for further research in this area. 
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(1) NLMPC algorithm involves a large amount of computational efforts as it 

requires a solution of a large scale nonlinear optimization problem at each sample 

interval. This limits the efficient application of NLMPC in real time manner. Hence, 

improving the computational efficiency for NLMPC algorithm is one of the key future 

research directions in this area. 

The nonlinear optimization approach and nonlinear modeling approach are major 

areas which can be considered for improving the computational efficiency of overall 

NLMPC algorithm. The current study uses the sparse nonlinear optimization package 

(SNOPT) for solving nonlinear optimization at each interval. SNOPT uses a sequential 

quadratic programming (SQP) algorithm that obtains search directions from sequence of 

quadratic programming subproblems. The user needs to provide the gradient information 

for the SNOPT and the missing gradients are calculated by means of finite difference 

approximations. In the current study, 75% of gradients are calculated analytically and 

remaining 25% of gradients are determined by means of finite difference approximation. 

For a large-scale optimization problem, calculation of gradients by means of difference 

approximation reduces the computational efficiency as well as decreases the reliability of 

optimization algorithm. (Gill, 1998). Use of analytical derivative calculation packages for 

fortran such as ADIFOR can improve the computational efficiency and reliability of 

nonlinear optimization problem. The use of modified SQP algorithms has shown 

improved performance for nonlinear optimization problems (Rao and Rawlings, 1998) 

Hence these optimization approaches should be considered for NLMPC algorithm. 
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m. (2) NLMPC incorporates nonlinear models of the process in the control algorith 

In the present study a detailed first principle model of reactive distillation was developed. 

This detailed dynamic model was discretized by means of orthogonal collocation on finte 

elements and appended as nonlinear constraints for optimization problem. A detailed 

model of reactive distillation column involves a large number of variables which results 

in increasing the size of optimization problem for simultaneous solution and optimization 

approach. The efficient use of nonlinear model reduction techniques such as use of 

orthogonal collocation along the length of column, (Srivastava and Joseph, 1987), wave 

propagation model approach (Chen, C.H., 1969) can decrease the size of nonlinear 

optimization problem, effectively improving performance of NLMPC algorithm. 

(3) The present study considered [L/D,V] control configuration for comparison 

between NLMPC and decentralized PI control structure. It is advisable to consider the 

other control configurations and analyze the performance of NLMPC for dual 

composition control of reactive distillation column. 
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