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CHAPTER I 

INTRODUCTION 

In order for a function to have geometric or physical significance, it must be 

invariant under some group. For example, the dot product of two vectors in 9?" and the 

cross product of two vectors in 9?̂  have geometric significance. It will be shown below 

that these two functions are invariant under the group of rotations. On the other hand, the 

vector formed by multiplying two vectors componentwise is not invariant under rotations, 

and thus has no geometric significance. In general, a function / : X ^ 91 is considered 

invariant under group G provided 

f{gx) = f{x) 

for every xe.X and g e G. (If g happens to act on the right of A:, then/is invariant 

provided f{xg) =f{x).) 

Definition 1.1. A rotation A is a linear transformation A: 91" —> 9?" such that 

AA^ = A^A = I and det( A) = 1. We often call the group of rotations the orthogonal 

group. 

Now it is intuitively obvious that the length of a vector in 9t" remains the same 

when it is rotated through the origin. Similarly, if 2 or more vectors are considered and 

the angle between the vectors is measured, we would expect that the angle between the 

vectors would remain unchanged. Length is simply a function / : 9t" -> 9?, such that 

f{x)^{x^,+xl+...+xl)/^. 



Definition 1.2. A function /:9?" ^ 91 is called invariant under the group of rotations 

provided/(Ax) =f(x) for every rotation A. A function / : 9?" x 9?" x.. .x9t" -> 91 is called 

invariant under the group of rotations provided 

/(Ax,,Ax2,...,Ax„) = /(x,,X2,...,x„) 

for every rotation A. 

Example 1.1. Invariance of length under rotation. 

Let X be any vector in 9t̂  , A = 
COS0 sinG 

-sin 6 COS 9 
— r-^2 , „2-wK ,and /(x) = (x; +xl)^. Then 

/(Ax) = / 
cosG sine 

-sine cose ^2jy 
= / 

x, cose+j:2 sine 
-;c, sinQ+Xj^ cose 

((jc, cose + JCj sine) +(-Jc, sine H-Xj cose) )^ = 2N>^ _ 

(x, COS e + jc, jCj cose sine + xl sin e + x^ sin e - ac,;c2 sine cose + xl cosO)^ = 

(xf(cos^e+sin'e) + X2(cos^e+sin^e))^ ={x'^+xl)^ = fix). 

(x,y) 
Also, if <{) is the angle between 2 vectors x and y in 91", then cos<t) = ' where 

ixy 

{x,y) is the dot product defined by (x,y) = x^y^ +X2y2+---+x^y^,aiid. |x| is the length 

of vector x defined by |x| = (x^ +xl^—\-xl )^. Thus, we can define 

g:9J" x9?" ^ [0,7c) to be the function that takes two vectors to the angle between them 

g(x,y) = cos -1 

V l^l|y| J 
= (^. (1) 



Example 1.2. Invariance of the dot product under rotation in 9?. 

Let X and y be any vectors in 9!. and A = 
cose sine 

-sine cose 

Then 

(Ax,Ay) 
Xj cose+jCj sine 

-J:, sine+Xj cose 
y, cose+y2 sine 

-y, cose+jj sine 

(x, COS0 +X2 sineXy, cose +^2 sine) + (-x, sine + ̂ 1:2 cose)(-y, sine +^2 cose) 

A:,y, cos^ 0 +^1^2 cose sine +JC2yi cose sine + j:2y2 sin^ e + 

x,y, sin^ e-jc,}'2 cose sine-j:2yi cosesine + j;2y2 cos^e = 

jr,y,(cos^e + sin^e) + X2y2(cos^e + sin^e) = jc,y, + x^yi = (x,y). 

Example 1.3. Invariance of the angle between vectors under rotation. 

Let X and y be any vectors in 91 and A = 
cose sinG 

-sine cose 

Notice from example 1 that |x| = /(x) = /(Ax) = |Ax|. So 

g(Ax,Ay) = cos" 
(Ax, Ay) 
, |Ax|Ay| j = cos 

f(Ax,Ay)' 

\ny 

cos 
(x^ cose+JC2 sine)(>', cose + }'2 sine)+(-j:, sine+JTj cose)(-y, sine+y2 cose) 

mm 

cos 
A:,y, (cos^ e + sin^ e) + X2y2(coŝ  e + sin^ e) 

Si . 
r 

= cos 
^l3 ' l+^2) '2 

|x|y 
= g(x.y). (2) 

J 

Also, one would expect that rotation of a parallelepiped about a vertex preserves volume. 



Example 1.4. Invariance of area under rotation. 

Let 0, X, y, and X + y be the vertices of a parallelogram in 91^. The area V(x,y) of 

the parallelogram is thus given by V(x,y) = |x||y| sin(|), where <|) is the angle between 

vectors x and y. Let A be a rotation defined as in example 2. Then from equations (1) and 

(2) in examples 1 and 2 we have 

V(Ax,Ay) = |Ax||Ay|sin(t) = | Ax|| Ay| sin(g(Ax, Ay)) = 

|x||y|sin(g(x,y)) = |x||y|sin(|) = y(x,y). 

Since the volume of a parallelepiped with a vertex at the origin is the determinant 

of the matrix consisting of the vectors corresponding to the edges that meet at the origin, 

we can check the invariance of the determinant. 

Example 1.5. Invariance of the determinant under rotation. 

Let A be any rotation in 9t". Then by definition det(A) = 1. Thus, if B is any 

linear transformation from 91" to 9?", then det(AB) = det(A)det(B) = (l)det(B) = det(B). 

Notice that in the first three examples the work in showing the invariances of the 

functions was in showing the invariance of the polynomials |xp and (x, y). This gives us 

motivation to formulate our first major question: "What are all of the polynomials that 

are invariant under rotation?" 

Example 1.6.1 want to describe all of the polynomials / : 9?^ -> 9̂  such that 

/(x) = y(Ax), where 

A = 
cose sine 

- s ine cose 
, X = and Ax = 

^ 3 c ^ 

\yj 



Definition 1.3. The total degree of a term of a polynomial to be the sum of the 

exponents of each variable in that term. 

Definition 1.4. A homogeneous polynomial to be that which every term has the same 

total degree. Suppose g(x) is an invariant, then if we break g(x) into its homogeneous 

pieces g, (x),...,gj(x), each homogeneous piece g,.(x) must be invariant. Thus, it 

suffices to consider only homogeneous invariant polynomials. So let 

gix) = a„x"' +a„_,x'"-'y+...+a,x'y"'-'+...+a,x'y'"-' +floy"'-

Since g(x)=g(Ax) for all e , we may choose e = 7c/2. Then, x = y and y = -x. Thus, 

a„_, = (-1)' a,. So for each / odd, a,- = 0. Also, this implies that both m and m/2 are 

even. Now take e = 7c/4, and let 

X , = 
.1 

X2 = 
"2^ 

<1 
m, 

•' ^mls-l ~\ 
/2-n 

Then 

Ax, = 
'^^ . r3V2/2^ , f mj2/4 ] 

0 
, AX2 — 

y-^/2j 
Ax = 

(2-m)V2/2 

By plugging into g(x) = g(Ax), we get a m by m/2-I system of equations whose solution. 

in terms of a„ is: 
m 

ml 
a, = '•— a^ where / = {m/2, m/2 + 2,..., m). 

(m — i) I /! 
Therefore, by the binomial theorem, g(x) = a^(x +y ) . Thus, by example 1, 

X +y is the only "real" invariant. This result is much harder for higher dimensions or 

multivector polynomials and different techniques must be used. 



The next natural questions is "Are certain polynomials invariant under other 

groups?". Here we will find all of the polynomials invariant under the group of 

unimodular (having determinant one) matrices. First we will define two types of vectors: 

covariant or column vectors, and contravariant or row vectors. Notice that acts on a 

covariant vector on the right, and acts on a contravariant vector on the left. Also, if x is a 

covariant vector, and y is a contravariant vector, then for the dot product we have: 

yx = yA"*Ax. 

Thus, in order to have the dot product as an invariance, it will be necessary to define the 

invariance of polynomials on the unimodular group as: 

/ (x , , . . . ,x„ ;y , , . . .y„) = /(Ax,,...,Ax„;y,A"',...,y„A"'), 

for every A e SL{n), and where {x,,..., x „} are n arbitrary covariant vectors and 

(y 1' • • •' y m} are m arbitrary contravariant vectors. 

Example 1.7. The invariance of the determinant under the unimodular group. 

Let / (x, , . . . , X „) be the polynomial associated with the determinant of n x n 

matrix M. Each x, is a vector in 9?" that corresponds to column i in matrix M. Also 

notice that if A is also an n x n matrix, then Ax,, is the ith colunm in matrix AM. Thus, 

if A € Sl{n), then 

/ (Ax„ . . . ,AxJ = det(AM) = det(A)det(M) = (l)det(M) = / ( x „ . . . , x j . 

Next, it is interesting to investigate the question: "What are all of the vector 

operations that have geometric meaning?". 



Example 1.8. The invariance of cross product in 9t^ under rotation. 

We define cross-product as a mapping ®: 91^ x 9t^ ^ 9?^ such that if x, y e 9 t \ 

then 

x®y = 

X, 

^ 2 

. ^ 3 . 

® 
yi 

yi 

.y^. 
= 

^ 2 } ' 3 - > ' 2 ^ 3 

^3^1 - 73^1 

^ l > ' 2 - > ' l ^ 2 

If A is a rotation in 9 t \ then we want to show A(x ® y) = Ax (8) Ay. Let 

A = 
h 
m, 

" i 

h 
m^ 

« 2 

h' 
m^ 

« 3 . 

Now define 

i' = Ai = /,i + m, j + n,k, 

j ' = Aj = /2i + m2J + n2k, 

k ' = Ak = Zji + /713J + Aijk. 

Now since A is orthogonal. 

AA 

p. 
h 

[h 

T _ 

A ^2 

m, fftj 

_«, n̂  

m, n, 

^ 2 " 2 

W j " 3 . 

p, 
m, 

. " 1 

3̂ 

Wtg 

" 3 . 

/, m, n, 

/ j m j n 

l^ mj n 

^2 '3 

mj m^ 

« 2 « 3 . 

= 

1 0 

0 1 

0 0 

= A'"A = A-'A. 

0 

0 

1 

(5) 

Therefore, we may write: i = A-' i ' = /,i ' + /2J' + /3k', 

j = A - ' j ' = An,i' + m2J' + m3k', 



k = A-'k ' = n,i' + n2J' + n3k', 

Since j ® k = i, 

m2 ® 

^n^ 

V"3y 

m^n^-m^n^ 

m^n^ —mji-^ 

(} \ 

\hy 

Thus, /, = wijAij - m^nj, Ij = m^n^ -m^n^, and , /j = m,n2 — m^n^. By the fact that 

i ® k = - j , and i ® j = k and similar arguments as before, we get m, = l^n^ - lin^ and 

n, = /j/n, — ZjATij .Now, let 

x = 

r ^ ^ 

\^3j 

, and y = yi 

vy^j 

Let's compute the first component of Ax ® Ay. Since 

Ax = 

'̂  jc,/, +X2m, + JCjW, ^ 

XJ2 +X2m2 +Xjn2 , and Ay = 
yA + yi^x + yi^x 

yik + yi^h + ysf^i 

yA + y2"h + y^f^i 

the first component of Ax ® Ay = 

(X^l^ + X^m^ + X3«2)(y,Z3 + ^ 2 ^ + 3'3«3) - (^1^3 + ^l^h + ^3«3)(>'l'2 + y2^ + >'3"2) 

= (^,^2 -^2) ' l)(^2"% -^3 '«2)+(^3) ' l -^l) '3)(^3n2 -^2n3) + (^23'3 - ^ 3 > ' 2 ) ( ' ^ « 3 " »%«2 ) 

= (X,y2 -^2> ' l )« l +(^33'l - ^ I ^ s ) ' " ! + (^2^3 - ^3^2)^1 

= the first component of 

/, m, n^ 

k ^2 «2 

h "h "3] 

^J^2>'3-^3>'2^ 

x^y,-x,y^ 
yx.y^-x^yj 

= the first component of A(x ® y) . 



After a similar computation, it is found that the second and third components of 

Ax ® Ay are equal to the respective second and thurd components of A(x ® y). Thus, 

Ax ® Ay = A(x ® y). 

Example 1.9. The invariance of vector addition. 

Here we want to show that vector addition makes sense in 91̂  as an operation 

since it is invariant under rotation. We define vector addition in the usual way as a 

mapping +:9?^x9l' —>9?̂  performed by adding the components. The invariance of 

vector addition is simply true by the distributive law of matrix multiplication: 

A(x+y) = (Ax)+(Ay). 

Example 1.10. Non-invariance of vector multiplication. 

Now we will examine why component-wise multiplication of a vectors does not 

make geometric sense. Let *: 91^ x 91^ —> 91^ be the operation that multiplies the 

components of one vector to another. If A is a rotation, we would like 

(Ax)* (Ay) = A(x*y). 

However, if we let 

A = 
'^A -V2 

, X = , and y = 

then 

(Ax)* (Ay) = 
. / 2 ^V2, 

T 
_2_ 

'^'A -y: 
> 2 ^A, 

"2" 
1_ 

= 
./2+V3J 

"V3-/2' 
= 

"2-5^X' 

_2-l-5^_ 

which is not equal to 



73-l" '^A - /2 

/2 ^A 

'^A -K 
/2 4^ 

= A(x*y). 

Since in each category, the number of invariant polynomials is infinite, it would 

impossible to write them all down. Therefore, the goal is to find a way to describe 

different types of polynomials that are invariant. This will be done by showing that every 

polynomial can be written as the sum, product, and scalar multiple of a finite Ust of 

certain polynomials. This list is called an integrity basis for the invariant polynomials. 

The existence of this integrity basis is called the First Fundamental Theorem of 

Invariant Theory . Our goal, therefore, is to show this theorem is true for the orthogonal 

and the unimodular groups. To do this, we must first show that any invariant polynomial 

of degree n with m vectors can be expressed in terms of our integrity basis if any 

invariant polynomial of degree n and n vectors can be expressed in terms of our integrity 

basis. Furthermore, if the determinant is in our basis or can be expressed by our basis, 

then only the invariant polynomials of n-1 vectors need to shown to be expressible by our 

integrity basis. Proof of this result relies on the very powerful Capelli identity, which will 

be shown in Chapter H. The Capelli identity preserves invariance, and enables us to 

inductively cut down the number of needed vectors from m to n-1. 

The next step in the proof of the First Fundamental Theorem of Invariant Theory 

is to show inductively for each group that the only necessary invariants in the integrity 

basis for invariant polynomials in n-\ vectors of degree n are the dot product, and the 

determinant. This again will be done by using Capelli's identity to break down the degree 

of the polynomial. The method that will be presented is based on the work done in 

10 



Herman Weyl's text, "The Classical Groups." However, in this thesis, all of the missing 

details are filled in and many useful examples are presented. 

Before moving on, a theorem on algebraic inequalities is needed. 

Theorem 1.1. Principle of the Irrelevance of Algebraic Inequalities: A polynomial 

F{x^,X2,...,x„) vanishes identically if it vanishes numerically for all points 

(x,,...,;c„) = (a,,. . . ,a„)suchthat i?,(a,,...,a„) ?iO,...,i?.(a,,...,a„) ^tO, where 

R^,...,Rj are polynomials. 

Proof. The proof is by induction on the number of variables n. 

Case n = 1: Notice that the set {a:: R^{a)^0,...,Rj(a)ii^O} is an open subset of 9t. 

Therefore, this subset contains a nonempty open interval. Since F(jc,) vanishes on this 

infinite set, it follows by the Fundamental Theorem of Algebra that F(x^ ) = 0. 

Induction step: Assume that the statement is true for n variables. Let 

F( J:, ,..., J:„^, ) = Ĝ  (x,,..., x„) J:„\, + G,_, ( J:, ,..., J:„ ) jc*-'4".. .+Go (x,,..., x„ ) 

be a polynomial in «-h 1 variables that vanishes numerically for all points (a,,... ,a „̂ .j) 

such that /?,(a,,...,a„+,)9t0,...,/?^(a,,...,a„^.,) 9^0. Now observe that 

{(a,,... ,a„^,):/?,(a,,... ,a„^,)9t0,...,/?/a,,... ,a„^,)?i0} is an open subset of 9?"^'. 

Fix a point (P,,..., p „̂ .,) in this subset. It follows from the Fundamental Theorem of 

Algebra that Ĝ  ,G^_, .....Gg vanish numerically for all points (a, ,...,a„) such that 

/?,(a, , . . . ,a„,p„^,)^0,. . . , /?, .(a, , . . . ,a„,p„^,)/0. Therefore, it follows from the 

induction hypothesis that Ĝ  ,Gt_, ,...,Go vanish identically. Therefore, 

F(x,,...,x„,,) = O.Q.E.D. 

11 
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CHAPTER n 

THE CAPELLI IDENTITY 

Let X, y and z be vectors in 9?" . Let / be a polynomial in m vectors. Define the 

polarization Dy, of / as 

o./'i^.lf 
1=1 

Let Ay,/ be defined in a similar fashion with one exception on composite polarizations. 

Notice that by using the chain rule 

C„0„/ = Z ) „ S . , | I = t v , 3 l L + t , , | i - . (3) 
i=i o Zi y,,=i a Xjd Zi ,=1 d Xl 

However, we will define Ay, A,̂  by 

A A f=yyx. ^'^ . 

We see that, in general, D^D^^ is not commutative since 

D..D^f-D^.tyif^=t^jyiYU-^^y^D^f-
i = \ O X; y , = 1 O ZjO Xj 

However, Ay, A„ is commutative. Therefore, it is easy to write composite polarization 

operations in terms of composite A operations. For example, equation (3) gives us 

^yx^xJ = Ay,A„/ + Ay,/ . 

Notice that we copy the subscripts of the polarization operators and if the second 

subscript of an operator matches the first subscript of an operator to the right (in this 

12 



case, x), then we add a A with the subscripts coming from the outside subscripts of the 

polar operators. A more complicated example: 

Dy,D,,D^f = Dy, (A„A,y + A,y)/ = Dy, A„A,y/ + D ̂  A ̂ ^ f = 

^yxAxzA,y/+Ay,A,y/+Ay,A,y/+Ayy/. 

Now let/be a function of m vectors {x', x ̂ , , x " } . We want to show: 

Theorem 2.1. 

D „ „ +{m-
X X 

^ x ^ x " 

^ x ' x " 

-1) • 

• 

• 

X X 

• D 2 2 + 1 
X X 

X X 

^ x " x ' 

^ x ^ ' 

^ x ' x -

= 

x^x" 

A ^„ • 
X X 

^ x ' x " • 

"'^x-x^ 

•• A J 2 
X X 

•• A , 2 
XX 

^ x " x ' 

^ x V 

^ x V 

(3) 

For example, if m = 2 : 

£ > 2 2 + 1 £ > 2 > 
X X X X 

D,2 D,, ^ xV ' X x' x'x'' x^x' x''x'' x'x' x'x' x'x' x''x 

A 2 2 A , , + A , | - ( A , 2 A 2 , + A , , ) = A 2 2 A , , - A , 2 A 2 i = 
x'̂ x'' x'x' x'x' ^ x'x'' x'̂ x' x'x' ' x'-m.'- x'x' x'x' x''x' 

^ x V ^x^x-

A.,., 

If m = 3 : 

D , 3 + 2 I > , 2 i 5 , , 

D 2 3 ^ 2 2 + 1 I > 2 . 
x^x-" x'^x'' x 'x ' 

D I > , 2 ^ . . 
XX XX 

= ( £ > , 3 + 2 ) 
D 2 2 + 1 JC>2 I 

xV x'x' -D 
I > 3 2 £ > 3 I 

x^x^ x-'x' 

XX XX 

+ D 
D 3 2 J D 3 1 

XX X X 

D 2 2 - 0 2 . 
XX XX 

( £ > 3 , + 2 ) 
A , 2 A , , 

XX XX 

- ^ X V ( ^ X V ^ X - X - - ^ X - X ^ ^ X 3 X ' ) 

+ ^ X . x 3 ( ^ x V ^ x V - ( ^ x V + l ) ^ x 3 x - ) = 

13 



D 3 3 ( A 2 2 A , , - A , 2 A 2 l ) + 2 
XX XX XX XX XX ' 

A 2 2 A 2 , 
x'x' x'x' 

A .„2 A , , 
- ^ x V ( ^ x V ^ x V - ^ x ' x ^ \ v ) + 

^X'X3(A,3,2A^2,, +A^3,, -(A^2,2A^3,, +A,3,,)) 

D 3 3 A 2 2 A , , - D 3 3 A i j A 2 i ) + 2 
x-'x-" x'x' x'x' x^x^ x'x^ x^x' ' 

A 2 2 A 2 , XX XX 

A , 2 A , , 
XX XX 

D 2 3 A 32A ,, + D 2 3 A 3,A ,2+£)l3A 32A 21 -r>,3A 3,A 22 = 

A 3 3A 2 2A , , - A 3 3A , 2A 2 , + 2 
X X X X XX X X XX X X 

A 2 2 A 2 , 
X X X X 

A , 2 A , , 
X X XX 

—— Z.\ 2 3 ^.^ 3 2 ^^ 1 
X X X X XX 

- A 2 2 A , | + A 2 3 A 3 , A , 2 + A 2 l A , 2 + A , 3 A 3 2 A 

+ ^x"x^^xV -^x'x'^xV^xV - ^ x V ^ x V = 

A 13A , 2A , , - A , 3A , 2A , , + A , 3A , 3A 3 , -

A 2 3A 3 2A , , + A , 3A 3 2A 2 1 - A 1 3A 2 2A 3 , -I-
x̂ x̂  x̂ x̂  x'x' x'x̂  x̂ x̂  x'x' x'x-" x'x' x̂ x' 

A 2 2 A 2 1 XX XX 

A , 2 A , , 
XX XX 

- 2 A 2 2A , , + 2 A 1 2A 21 = 
XX XX XX XX 

A 3 3 A 3 2 A 3 , 
XX XX XX 

A 2 3 A 2 2 A 2 1 
XX XX XX 

A ,3 A ,2 A , , 

+ 2 
A 

A„,„2 A 

2 2 ^ 2 1 
X XX 

x'x' x'x' 

- 2 ^ x ^ x -

A , , 

A 3 3 A 3 2 A 3 , 
XX XX XX 

A 2 3 A 2 2 A 2 1 
X x-̂  XX x'x 

A , 3 A , 2 A , , 
X x-̂  XX XX 

To prove theorem 2.1, we first need a lemma. 

14 



Lemma 2.2. 

^.™,™+(m-l) A, 

^xV "^x^x"-' 

^x'x" ^ x ' x -

A 2 2 A 2 I 
x'x' x'x' 

A . . 
X X 

A . 

(3) 

^ x V ^x'"x' 

A 2 2 A 2 I 

A , . 

First, for motivation, the case m = 4 is proved. 

D 4 4 + 3 A 4 3 A 4 2 A 4 , 
x'x' x'x-" x'x^ x*x' 
1 ) 3 4 A 3 3 A 3 2 A 3 , 

X-'x' x V x-'x' x-'x' 

D 2 4 A 2 3 A 2 2 A 2 I 
x'x' x'x-" x'x' x'x' 

D , 4 A , 3 A , 2 A , , 
x'x x'x̂  x'x' x'x' 

(D..+3) 
3 2 ^ 3 1 

X X X X 

A 3 3 A 
x-^x 

A 2 3 A 2 2 A 2 1 
x'x-" x'x' x'x' 

A , , A , , A , , 

-D,. 

A 4 3 A 4 2 A 4 , 
X X X X X X 

A 2 3 A 2 2 A 2 1 X X X X X X 

A , 3 A , , A , , 

X X 

A 4 3 A 4 2 A 4 , 
X X X X X X 

A 3 3 A 3 2 A 3 , 
XX XX XX 

A , , A , 2 A , , 

-D,. 

A 4 3 A 4 2 A 4 , 
X x-̂  X X X X 

A 3 3 A 3 2 A 3 , 
XX XX XX 

A , 3 A , , A , , 

£ > 4 4 
X X 

A 3 3 ••• A 3 , 
XX XX 

A . 3 ••• A , , 

+ 3 

A.,„ 

A 3 , 

A , , 
X X 

X X X X 

A 2 2 A 2 I 
X X X X 

A , 2 A , , 
X X X X 

+ ^ .3„4A^ 
A 2 3 A 

X X X 

A ,3 A 
-D..A, 

X X X X 

A 2 3 A 2 
X X XX 

A ,.3 A ,_ + 
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D..A. 
X X X X 

A 3 2 A 3 , 
x^'x' x'x' 

A , 2 A , , 
x'x' x'x' 

-^.2 4A4 
X X X X 

A 3 3 A 3 , 
X X X X 

A , 3 A , , 
X X X X 

^.2.4A 4 
X X X X 

A 33 A„ 

A , 
-^.MA. 

X X X X 

A 3 2 A 3 , 
X X X X 

A.2 . A , , 

,̂..4 A 4 
X X X X 

A 3 3 A 3 , 
X X X X 

A 2 3 A 2 , 
X X X X 

£>,4A 4, 
X X X X 

A 3 3 A 3 2 
X X x-'x 

A 2 3 A 2 2 X X X X 

A 4 4 
X X 

A ,3 ••• A 3 , 

A , , ••• A , , 

-h3 

A, 

A.. 

- A 3 4A 4 3 
X X X X 

A 2 1 

A , 2 A , , 
X X X X 

A.,.3 
A 2 2 A 2 , 

X X X X 

A , 2 A , , 
X X X X 

+ A 34A 4 
X X X X 

^xV 

A..., 
+ A 

A 2 3 A 2 1 
X x-" X X 

A , 3 A ,, 
X X X X 

A 3 4A 4 
X X X X 

A 2 3 A 2 2 
X X X X 

A , 3 A , 2 
X X X X 

- A 3 , 
A 2 3 A 

X X X 

A..3 A. 
+ A 2 4A 4 3 

X X X x*̂  

^xV 

A.,„, 

A 2 3 
x'x-" 

A 3 2 A 3 , 
X X X X 

A ..2 A , , 
- A , 4A 4 

A 3 3 A 3 , 
X X x-̂ x 

A , 3 A , , 
-A 

A 3 3 A3, 
X X X X 

A , 3 A , , 
X X X X 

A,4A^ 
A 3 3 A 3 

X X X X 

A ,3 A , 
+ A 

A 3 3 A 3 2 
X X X X 

A , 3 A , 2 
X X X X 

- A , 4A 4 3 
X X X X 

A,, 
X-'x 

A.2 . 

-A 
A 3 2 A 3 , 

x-'x' x^x' 

A„2„2 A , 

+ A , 4A 4 
A.3., 

A,2„3 A, 
+ A, 

A 3 , 

A 2. 
X X 

- A , 4A 4 
X X X X 

A 3 3 A 3 
X X x-̂ x 

A 2 3 A 2 
- A , , 

X X 

^ 3 3 A 3 2 
X-'x" X-'x' 

* 2 3 ^ 2 2 X X X X 

After collecting similar terms 

A 4 4 
X X 

A 33 
XX 

A 2 3 
X x" 

A , 3 
XX 

^ x V 

^ x V 

^x'x^ 

A 3 , 
XX 

^x^x' 

^x'x' 

- A 43 
X x-̂  

A 3 4 A 3 2 A 3 , 
x 'x* X-'x'' X-'x' 

A 2 4 A 2 2 A 2 r 
x^x' x'x' x'x' 

A , 4 A , 2 A , , 
„l~.*t v ' v * v ' v ' XX XX 

+ A 4 

A 3 4 A 3 J A 3 , 
XX XX XX 

A 2 4 A 2 3 A 2 I X X X X X X 

A , 4 A , 3 A , , 
XX XX 
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I-..^.,^...-..,^ •^^- - in«M«ii iifirwimtiT--

A4, 
XX 

A 34 A 3 3 ^ 3 2 
X X X X 

^x^x" ^x^x' ^ x V 

A , 4 A , 3 A , 2 

+ 3 

A 3 3 A 3 2 A3, 
X-'x'' x'x̂  x'x' 

A 2 3 A 2 2 A 2 , XX XX XX 

,2 ^ , , XX XX 
A - 3 A 

-3 

ZA 3 3 tA 3 2 ^ 3 1 

x^x"^ x"^x x'^x' 

^ 2 3 ^ 2 2 ^ 2 1 XX XX XX 

A , , A , , A , , 

A 4 4 A 4 3 A 4 2 A 4 , 
XX XX XX XX 

^ x V ^ x V ^x'x^ ^x'x' 

A,2.4 A,2.3 A^2,2 A^2,, 

A .„2 A , , 

X X- x"x 

A ,4 A 

Now, to prove the general formula, assume m is even for ease of notation. (Proof is 

similar if m is odd.) We must evaluate the determinant on the left by cofactor expansion 

down the first column: 

A „ „ - , , 

(D „ + m - l ) 

^ „ , „ i n - l 

-YD J 
^J x-'x 
jodd 

A^;+l^„., 

A,;-,, 

^x"x> 

^x^^'x ' 

^x^- 'x ' 

A , , 
XX 

+ S ^xV 
j even 

A^yH,™-, 

A ,-, „., ^xV-x> 

A.,., 

Let 

A. . 

^x'"-'x'*' '^x ' - 'x ' - ' 

^x^^'x'"' ^x>*'x'- ' 

^x^-'x'* ' '^x^-'x'-' 

A,™-,„ 

Aw-'. 

A , , 
XX 

17 



then by expanding the determinants under the finite sums by the cofactors across the top 

row, we get 

( D „ , „ - m + l ) 

^ ^ „m—I„m— 

A„,„ 

S ^ x V ^ x v C , ; + S ^ x V ^ x v C . 7 -x-'x " x"'x' 
jodd,iodd jodd,ieven 

Z-i ^x- 'x ' " ^ x-'x' ^ y "•• ^ ^x^x-" ^ x"x' ^ij • 
jevenJotM 

Since there is no A with x" as a left subscript in the first term, we can write D „ „ as 

A „ „ . However, since D , „ A „ , = A , „ A „ , + A , , , we can write the above in 
X-'X X X x 'x X X X'X 

terms of all A's: 

(A „ „ + m -1) 

A „.,„., ••• A ..,, 

A ,„., 
XX 

A„,. 

- I(A,;,„A^„^,C,+A^,,,C,)-h 
jodd^odd 

S (A,.,„A^„^,C,+A^,^,C,)- S(A,.,„A^„^,C,+A^,,,C,)-h 
jodd,ieven jevenjodd 

Z ( ^ x > x " ^ x " x ' C , > + A , . , , C , ) . 

jeven.iodd 

Which after a rearrangement of terms equals 

^ ' x " - ' • • • ' ^ x ' x ' 

- S ^ x V ^ x V ^ O + X ^ x ^ x - ^ x V ^ y -
joddjodd joddjeven 

S ^x^x" ^ x " x ' ^U - S ^x^x" ^ x V ^iJ + 
jeven,ieven jeven,iodd 

(m-1) 
^ x " - x ' 

^ x ' x - ' • • • ^x 'x -

- Z^vC,+ 
jodd.iodd 
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I ^ v C , - IA,.,C,+ X A ^ , , C , = 
jodd,teven 

x'"~'x'"~' 

^x'x-"-' 

]even,ieven 

^x'"- 'x' 

: 

••• A , , 
XX 

jevenjodd 

~ ZJ x'x" 
Jodd 

^xV 

^xJ^'x"-' 

^x'-'x"-' 

^x'x'"- ' 

^x'"x' 

^x^*'x' 

^ x > - ' x ' 

•• A , , 
XX 

Z-l x'x" 
jeven 

\"x"-' - K 

^ J - , m- . 

A , 

"xJ* 'x ' 

^x' ' - 'x ' 

A.,., 

+ 

+(m- l ) 
A„„-,. 

-s 
jodd A, . 

^ ^ m - l , . 

A., 
-s 

jeven 
A •„„-, 

„m-l„ 

A , , 
XX 

A 
X 

A A, . 

+ (m-l) 

A„„-,„ 

•• A , 

- ( m - 1 ) 

A ,̂̂ „., 

A „.,. 

A , , 
XX 

Which equals the determinant on the right in (4). Notice that by exactly the same 

argument (6) 

D „ „ - h m - l A_ ^ x V ^x'-y' 

^x^x" 

^x'x'" 

A,2y„-, ••• A 2 2 ^ 2 , 
x'y' x'y' 

A , 2 A , , 
xy X y 

x'"x'" ^x'"y'"-' 

^x^x'" ^x^y-"-' 

^ x ' x " ^ x ' y -

A „ 2 
X y 

^x^y^ 

^xV 

A „̂y, 

^x^y-

A , 
x y 

where x^ may or may not be equal to y ' 
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Also, if x"" ?t y" , then 

'g=!°a°gg"n"MitiilMir*'°''***' 

x"y" 

X y 

D^Y 

'—* m m - 1 

A 2 „-, • 
X y 

A^,y„., 

•• ^ x V 

•• A 2 2 
X y 

•• A ,2 
X y 

^ x ; y ' 

^ x ^ y ' 

A , , 
X y 

= 

x"y" 

\^y" 

^x'y" 

' - * m m- i 

A,2y-,-, 

A ,̂y„-, 

•• ^ x V 

•• ^ x V 

•• ^ x - y ^ 

A,„y, 

^x^y-

^xV 

.(7) 

Now assume for some j<m. 

A,™ . 

A.,. 

D „ „ +m-l ^x'"x'"-' 

£>„-,_„-,+/n-2 

£> . , . . ^.,..-, 

D ^^m,]-i 

^,m-\ i ^.,m-\ J-\ '" ^ m-l 1 

D..+J-1 

D 
' vJ 

A , ,-, • • • A , , 

.(8) 

Expand the determinant on the right by its cofactors down the first m-j+l columns. Then 

the determinant on the right equals 

2;?̂ (£>,,<™,,™ +5(m-l))(D^„,„.„^„_, +5(/n-2))...(Z)^„,,^, + 5 ( ; - l ) ) 
^ , o ( / - i ) , y - , • • • x°' ' '""x' 

^ » O ( I ) Y V - , 

Where *F ranges over all permutations of {m,m-1,...,1}, {a(m),a(m-l),...,G(l)}is 

some permutation of {m, m - 1 , . . . ,1}, 
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a&»MMMi(«Maa i ia i ^^ aax:s^^,^^aigi..;i..gggrr—rrrmii i- r<.^rrnrftn 

fl if a(A:) = fe (I odd permutation 
" = T « r. x,x , ' ^ e {m,m-l,...l} ,and X = -̂  

[0 if a{k)^k [-1 even permutation 

Since (5), (6), and (7) are true for all m > 0 and that j -1 -c(i) for at most one 

/e{ ; - l , . . . , l } ,wege t 

XM£>,O<.,,. +6(m-l))...(D^„,„ ,̂ +6(;-l)) 
D.u->KJ-^ + 5(;• - 2 ) • • • A „,j.,. 

D„„ , , -h5 ( ; -2 ) - A, 

D , ^ „ + m - l D 

^..m-l..m £>,.-,,»,-, + m - 2 

X X 

D ,., „., 

^x'x-"- ' 

x'"xJ-' 

^x" - ' x^ - ' 

D .-,,.. +7-2 

^x -x^ -^ 

A..-W-2 

^x '"x ' 

A,„-,, 

^ , /-, A , ,.2 • • • A , , 

Therefore, by induction on the columns of the determinant, we get (4). We can write 

a a a " 
."I ..»> 

.m-1 

^2 

.m-1 

J „1 

ajc," 
a 

dx^ 

a 
a^: 

a 

a 

a 

r̂-' 
a 
x""' 

.̂  

a 
. - 1 

dxl 
a 

a 4 

a 
^xl 

^x"x" x"x'"-' ' " x'"x' 

A ,.. A •• A , , 

If m > n then 

A 
X 

A 

= 0, 
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jgtamaaigMaaattEaa 

since if A = BC, then rank(A) < min{rank(B), rank(C)} which, in this case means 

rank( A) <n<m. Therefore, | A| = 0. If m = n, then let 

[x'",x'"~', x ' ] = and Q = 
dx: 

dx: 

dx\ 

a 
ax-

Thus, 

[x'",x'""', x']Q = 
• ^ x V 

• A , , 

So combining with (6) we get 

Theorem 2.3 The Capelli Identity 

D „ „ +m — l £ ) „ „ , ••• Z ) „ , 

D^r.-<„ D ..,.., + m - 2 • • • D .., , 

D D,„-. D 

/ = • 

fo if m>n 

[x'",x"'-',...,x']Q/ if m = n 
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^^B^^ffl^fflBfflfl^^^BBB aaaasHa mr"^""'"'"-'̂ ^ -̂

CHAPTER m 

POLARIZATION PRESERVES INVARIANCE 

If / (x , X ,..., x") is an invariant under the group of Unear transformations 

Fthen we will show that by the Capelli identity, Q/(x ,x ,...,x'") is an absolute 

invariant provided the elements of T are unimodular (i.e., of determinant 1). However, if 

the elements of F are not unimodular, then Of is still relatively invariant. For example, 

let/be invariant under group T, then if A e F, 

/(Ax',...,Ax'") = /(x' , . . . ,x '"). 

Therefore, 

Q/(Ax',...,Ax'") = Q/(x',...,x'")/det(A). 

To show this, we first need a lemma. 

Lemma 3.1. Iff is an invariant under T, then D^^f is invariant under T. 

Proof: Let /(x,y) be invariant in F. Then /(x,y) = /(Ax, Ay) provided 

A e r . Let 

A = 
a, a. 

, u = Ax, and v = Ay. 

Then u^ = ^^ji^i ' ^^^ ^j = X ^ J ' ^ ' • '^° ' ^^ ^^^ ^^^^ ^^^' 
i= l 1=1 

9/(x.y)_^a/(u,v) duj _ " a/(u,v) 
dX: v=i 3"y 3^/ ;=i aw. 
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So, 

o„m.y^-ty'-^-ty,±a,^^ 
1=1 ajc. 1=1 j=\ 

^a/(u ,v)^ ^a/(u,v) ^ .̂  ^ 
J=l 3Wj •=] ;=1 3"; 

Q.E.D. 

Therefore, if u-* = Ax-', and / ( x ' ,...,x'") = / ( u ' , . . . ,u '") , then it is obvious that 

, 1 „ m D^,^jf(x ,...,%'") = D^,^y/(u , . . . ,u '") . So, by induction on the number of polarizations. 

^ , , •••^xv/(x''•••'X'") = ^u^.'•••^..'..^/("''•••'U") • Clearly, sum and multiplication 

by a constant preserves invariance. Therefore, since the determinant on the left side of 

Capelli's identity is simply the sum and constant multiplication of consecutive 

polarizations, it is invariant under T. So 

^ x " x - + ' « - l ^ x " x -

D 

D,„ D 

D 

D_„.„.,+m-2 ••• D 

X X 

/(x',...,x'") = 

D„ „ + m - l D „ 
u'"u'" u"u 

D 

D ..,,,., + m - 2 • • • D .., , 

D A....... • A.... 

/(u ' , . . . ,u '") . 

Also, 

[u',u%...,u'"] = [Ax\Ax%...,Ax'"] = = (detA)[x',x\... ,x'"] 
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Ba.,i..UlliLLL.'UH]imLJl «a5gwi;!JW»maaiiLx.iiJ^^ 

So, 

Qf{u\...,u'") = 

D „ , „ - h m - l D 
u ' u ' u'"u'""' 

V'u-+'"-2 •• 

u'u"" A.... 

^ u " u ' 

u" 'u 

A..... 

/(u', . . . ,u'«) 

[u',...,u'"] 

^ x " x " + ^ -

x'"-'x'" 

^x'x-" 

-1 
^x'"x'"-' 

£>,„-,,„-,+m-

^x'x-"-' 

• 

-2 • 

• 

• ^ x " x . 

^x'"-'x' 

X X 

/(x', ..,x'") 

(detA)[x',x%...,x'"] 

Q/(x',...,x'") 

detA 
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»»a««a...«.«.w.«i.»ni»»iy....~.i......»....|.»...iam-.n;=i.-,.-;^n;r^rr, - -i,i,.,r, U....M 

CHAPTER IV 

REDUCTION OF BASIC INVARIANTS 

A form is a polynomial / (x ' , . . . , x") such that every monomial has the same 

degree r̂  in the components x'j of x' for eachj = I,...,m. For example, 

fix,y) = {x,)\x2)\y,)iy2y-5(x,)'(x2yiy,)\y2)' 

is a form because in each monomial, the degrees of the components of x sum to 7 (3+4=7 

and 2-+5=7), and the degrees of the components of y sum to 5 (1+4=5, and 3+2=5). We 

then say that x is of degree 7, and y is of degree 5. If {r,, r j , . . . , r„} are the respective 

degrees of {x,,X2,...,x^}, then the total degree r is defined as r^r^ + TJ+....+r„. The 

total degree the above example is r = 7+5 =12. The rank of form /(x',...,x'")is an 

ordered (m+l )-tuple (r, r,, / j , . . . , r„) composed of the total degree r of/, and degrees {/;} of 

the vectors {x̂ .} .A lexicographical ordering is placed on the rank by making the 

following definition: if (r, r,, TJ,. . . ,r„) is the rank of /(x' , . . . ,x"") and (r',r,',r/...,r^) 

is the rank of g(x',...,x"*), then (r, r,, TJ,.. . ,r„) < (r',r,',r^,...,r'J provided either 

r<r' or if r = r' and r. = r' for all i < /: then r̂  < r ' .If r = r' and r̂  = r! for all 

I e {1,..., m}, then the ranks are said to be equal. For example, let / (x , y) be defined as 

above, and let 

g{x,y) = Xx,)\x2)\yy{y2)'-l{x,)\x2)\y,)\y2f. 

Let us verify that rank{f{x, y)) = (12,7,5) < (12,9,3) = rank{g{x, y)) .Check the first 
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component (total rank): 12=12. Check the second component (rank of x):, 7<9. 

Therefore, rank(f) < rank(g). Let Q/be defined as previously. Of takes the partial 

derivative of each component of each vector i n / Thus, if the rank of/ is (r, r,, r j , . . . , r„) , 

then the rank of Qf is (r - m, r, - 1 , TJ - 1 , . . . r„ - 1 ) . For example, let / (x , y) again be 

defined as above. Then 

i¥(x,y) = 

a 
5ji 
a 

dy2 

_a_ 
dx^ 
a 

dx2 

/(x,y) = av av 
a^ja^j ayja :̂, 

4{x,)\x2)\y2r-15(x,)Hx2)\y,f(y2f-n(x,)\x2)\y,y(y2)'+2Qix,){x2)\y,)Hy2) 

So, rank(Qf) = (10,6,4). 

When the main diagonal of the polarization determinant of Capelli's identity 

operates o n / we get 

(D„^„ +/n-l)(D„.,^„., + m - 2 > " D , ^ , / , 

which equals by Euler's theorem 

( r „ + m - l ) ( r „ _ , + m - 2 ) - r i / = p / . 

The p multiplying / is simply a constant greater than zero when r, > 0 since each of the 

other factors (A; + / -1) > / - 1 > 0 when / > 1. Thus p is greater than zero when/actually 

contains the vector x ' . When the polarization operator determinant in CapeUi's identity is 

expanded, any term that contains 1 or more of the diagonal factors D ,̂̂ , +i-\ can 

replace each diagonal factor with r^+i-l again by Euler's theorem. 
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..i............,..l,.M,.l.,«l,l»««M«««a»j»..i.»«,.»«>,i.i..».»»mmi.ir,r.n»n.i,i>i.».r.oje;«^ 

Example 4.1. Consider 

^ x V (^x-x-"- + ' « - 2 ) ^ x S - - ^ x . x 3 ( ^ x V + 1 ) ^ X V / ' 

then we can replace the two main diagonal factors and rewrite the term as 

(r„_, + m - 2){r2 + l)D^3,-„ £>,4,„-2 • • • Z)^,,, Z>,5,, / • 

For each term of the operator determinant let's associate a p^ to represent the product of 

the scalar factors described above, (K € {l,...,m!} to distinguish each p for each term). If 

there are no factors from the main diagonal in a term then p^ = 1. Then each term will be 

of the form 

where a^ >a^_, >...>a2 >oc,, a, 9̂  P, (otherwise Dp. „j would already be included 

inp^), and {P^,p^_,,...,p,}is a permutation of {a^,a^_],...,a,}. Notice that since a , is 

the smallest element of {a^,a^_,,...,a,}, and a, ^ P, therefore, r > 2. Also, the main 

diagonal is the only term in which all the factors D̂ ^̂ , have the same indices. Therefore, 

let 

PK ='C>,,2,a2"-'D^P2,-2. a n d / = -p^D^p ,^„ , / 

Then we can write the left side of Capelli's identity as p / - ^ P K /K • Since 
K 

1=1 " - ^ 1 

the degree of / , has degree one less than/in terms of x"' and degree one greater in 

terms of x'^'. Since a, < P,, the difference in rank between the forms is first decided by 
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the degree of x"' according to our ordering. Thus, the rank of/ is greater than the rank 

o f A -

We can rewrite CapeUi's identity in terms of P̂  and p : 

P / = S P K / K i f m > « 
K 

P / = Z P K / K + [ X " , X ' " - ' ,x']Q/ if m = n 
K 

The four following properties of Capelli's identity are now realized: 

1) /^ and Q/ Q/ are of lower rank than/ 

Since 

i ¥ = 
dx: dxl 

dx: dxl 

f. 

the degree of each component of each vector is reduced m times. Therefore, the degree of 

each vector in / i s reduced by m times, thus the rank of Q/ is lower than the rank off. 

2) If/is an invariant, then /^ and Of are invariant. 

Since l=-p^D,,„J , D,,^J is invariant and - p , is just a constant, / , is 

invariant. 

3) P̂  is a succession of polarizations. 

Thus, if / , is invariant, then P̂  / is invariant. 

4) If/contains x (i.e. x is not of 0 degree in/), then p > 0. 
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Now, let us define A„ p̂ ^̂  to be the set of all invariant forms under subgroup r(n) 

of GL/?f«j depending on m vectors x^x^...,x'" e9?".That is /(x', . . . ,x'")€ A„r(„) 

provided /(x ' , . . . , x"") = /(Ax',.. . , Ax ") for every A e r(n). .Let us suppose that we 

can choose a finite subset {(p,,(p2'--'9/) <= ^mxw such that {(ppCpj'---'̂ ;) ô™^ ^ integrity 

basis for A„ p(„). That is each / G A „ (̂n) Is a polynomial in {cppCpj'---'̂ /} • When this 

occurs we say that/is expressible by the elements of {(pp(p2,...,(p,}or more concisely,/is 

expressible in {(p,,(p2'-'9;}-

It will be convenient to formulate the notion of a typical basic invariant. Let 

(t);(u',...,u*),(t);(u',...,u'),... (5.4) 

be some polynomial functions depending linearly on some vectors u',u^,... (not 

necessarily the same number for each function). These functions <t)',(t)2,... are called a 

complete table of typical basic invariants for m arguements if (5.4) becomes an 

integrity basis for invariants of m arguements x' .....x" by substituting for u',u^,... 

these x' 's in all possible combinations (repetitions included). For example, if <t)i(u' ,u^) 

is the dot product /u' ,u^\, then this function will product the table of invariants for 3 

arguements x',x^,x': 

{(x',x'),(x^x^),(x^x^),(x^x•),(x•,x^),{x^x'),(x^x^),(x^x^),(x^x^)}, 

which can be reduced since (x^ .x') = (x' .x-' V. Denote the set of all such substitutions in 

(5.4) with <E). 
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Since each (p e O is linear in its vector arguments, polariztion D , j(p simply 

replaces the x^ vector in (p with the x' vector. Thus, D , j(p e O . (If (p is not a function 

in terms of x-*, then Z)̂ ,,j(p = 0, which is trivally a polynomial in the elements of 4>.) 

Note that in the cases of Sl{n, 9t) and 0(n), which will be treated in this thesis, the 

typical basic invariants would be 

<^;(u\u') = uluf+...+ulul and (t);(u',...,u") = det[u',...,u"]. 

These are indeed linear in each separate vector argument. 

Now can formulate the following powerful theorem: 

Theorem 4.1. If <|) is an integrity basis for all invariant forms depending on n vectors in 

SR" with the added condition that i/ (p g O, then either D j i(p e<P or, D j i(p can be 

written as a polynomial in the elements of O, then O is an integrity basis for all 

invariant forms depending on m>n vectors in 9?". This is true for any subgroup r(n) of 

GLR(n) under which the forms are invariant. 

The proof of this theorem is by induction on rank. Let F„ ,̂ be an arbitrary 

invariant form in n+I vectors. We assume for induction that every invariant form with 

rank less than F„ ,̂ can be expressed in terms of the elements of O. We then show that 

F„ ,̂ is therefore expressible in terms of <E) by Lemma 3.1. Finally, we use Capelli's 

general identity to show that this can be extended to a form in m vectors. The details 

follow: 

Proof: First we must realize that polarization has the same formal properties 

differentiation: 
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a)D,, . ( / + g) = Z),,,./ + D„,g 

Because D , . ( / + g) = 1 4 ^ ^ = P^il^^^^ = ^xv/ + ̂ x'x>̂  

b)D,^,(a/) = aD^,^,/ ae9^ 

Since D,,(a/) = i x i ^ = S a x ; ^ = a S . ; ^ = a D , , / 
k=\ "-^i k=\ "•** k=\ OX^ 

c) D^,^jifg) = gD^,^jf + fD^,^jg 

Because 

it=l O-^i i=I O-^i OAĵ  i = l OJTjt 4=1 OXjt 

The proof of the theorem is by induction on rank. Assume that O is an integrity basis 

for all invariant forms of n vectors in 9?". Let F̂ ,̂ be an invariant form in n+I vectors, 

say {x',...,x",x"''"'} in 9?". Let A;, represent the degree of X' in F„.̂ ,, and let r*^ represent 

the degree of x' in i^', where F̂ * = -p^. D p, „, F„.̂ ,. By the fact that P̂  is a successions 

of polarizations, the above formal properties of polar operators, and the first hypothesis of 

the theorem, if F*, is expressible in O, then pF„̂ , = ^ P ^ ^* is expressible in 4> 
K 

provided p > 0 (i.e. r, >Q). 

Base case: The lowest rank that a form/can have in n+1 vectors is (n+l,l,l,...,l). Thus, 

the rank of / = -p^D^p,^„,/ is (n+l,l,..,0,...,2,...,l). So / , is a polynomial in n vectors 

and thus by hypothesis can be written as a polynomial in O. Also, the rank of P̂  / . is 
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less than / thus P̂  / is a polynomial in n vectors and can be expressed by O. So by 

the Capelli identity,/can be written as a polynomial in 0 . 

Induction step: 

Suppose all invariant forms with rank less than F„.̂ , can be expressed in terms of 

elements of <I>. Each F* = -p^D p, „, F^_^^ is an invariant form with rank less than F„+,. 

So, each F* can be written in terms of the elements of 4>. Therefore, as stated earlier, 

this implies that F„ ,̂ can be written in terms of. Thus, this is true for any invariant form 

with finite rank by induction. 

This proof can be extended easily to m vectors by induction again. The fact that 

0 is an integrity basis for F^_^,^ impUes that O is an integrity basis for F̂ .̂ .̂̂ , since 

n+k+I>n and therefore Capelli's general identity can still be used. Q.E.D. 

It will now be shown that we can do one better provided the determinant of the 

matrix of the vectors (i.e., [x',x^,...,x"]) is either an element or expressible by the 

elements of O. 

Theorem 4.2. If the determinant [x',x^,...,x"]e O' or at is a polynomial in 4>', andif 

O' is an integrity basis for all invariant forms in terms ofn-1 vectors in 9?", then O ' is 

an integrity basis for all invariant form ofn vectors. This also true for any subgroup r(n) 

of GLR(n) under which the forms are invariant. 

The proof is similar to the proof of Theorem 4.1 in that it is by induction on rank. 

Let F be an invariant form in n vectors. Assume for induction that every invariant form 
n 

with rank less than f;, can be expressed in O ' . Then by polarization property 1, i2F„ has 
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rank less than F„. Also, by polarization property 2, QF„ is an invariant form. Therefore, 

^F„ is expressible in O ' . However, this time since n=m, Capelli's special identity will 

be used. That is pF„ = J^P^F^ +[x',x',...,x"]aF„. Therefore, F„ is expressible in O ' . 
K 

The details of the proof are given below. 

Proof: Again, we need p > 0. However, if p = 0, then /; = 0, and thus, the 

degree of x' is zero. Thus, F„ is a form in the vectors {x^,...,x""',x"}. So, by 

hypothesis, F„ is an invariant form expressible in O ' . So we can assume that p > 0. It 

will suffice to show that each F^ is expressible in O' as before and to show QF„ is 

expressible in O ' . By hypothesis [ x ' , x \ . . . , x " ] € 0 ' , therefore [x^x^...,x"]Qi^ is 

expressible in O ' . The theorem will now be proved by induction on rank. 

Base case: Suppose/ has rank (r,r,,...,l,...,rj. Then Qf has rank 

(r - n, r, - 1 , . . . ,0,..., r„ - 1 ) . Thus Qf is a polynomial in n-I vectors and can be expressed 

as a polynomial in <E>'. The rest follows from the proof of theorem 3. 

Induction step: Suppose that every invariant form that has rank less than F„ is 

expressible in O ' . By property 1, each F^ has rank less than F„, and QF„ has rank less 

than F„. Therefore, Q.F^ and each F^ is expressible in <!>'. Thus, by Capelli's identity, 

F„ is expressible in O ' . So by induction, all invariant forms in n vectors in 9t" can be 

expressed by the elements of O ' . Q.E.D. 
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CHAPTER V 

THE UNIMODULAR GROUP SUn) 

SL(n) is the collection of all nxn linear transformations with determinant 1. 

SL(n) is easily verified as a group with matrix multiplication as its group operation. For if 

A, B e SL(n), then det(AB) = (det(A))(det(B)) = (1)(1) = 1. Thus, ABe SL(n). Also, the 

identity matrix, I„, has determinant 1. Since det(A) = 1, then det(A~^) = 1. So A"' e 

SL(n). Therefore, SL(n) is a group. 

Our goal is to find a finite table of invariant forms (basic invariants) under SL(n) 

such that every invariant form (under SL(n)) can be generated as a polynomial in the 

entries of the table. In order to do this, we need two types of vectors: 1) the covariant or 

column vector and 2) the contravariant or row vector. 

Let X be a covariant vector, and let y be a contravariant vector. If /(x,y) is 

invariant under SL(n), then /(x,y) = /(Ax,yA~') given AeSL(n). The importance of 

these two types of vectors is shown through example: 

Define /i(x,y) = A;,y, + X2y2 (i-e. dot product). We will show later that /i(x,y) is invariant 

under 5L(2j. A = 
1 3' 

1 4 
e SL(2), and thus, A = 

Ax = 
1 3' 

1 4 

= 
' 4 - 3 

-1 1 

rf^ J 1 J^/y 

X, + 4A:2 

So 

, and 

yA-'=[>', ^2 
' 4 - 3 ' 

-1 1 
= [(4y,-y2) (-Sy.+yj] 
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So, we have 

;i(Ax,yA-') = (x, +3x2)(4y, -y2) + (x^ + 4x2X-3y, +^2) = 

4X|>', + Ux.y, - x^y2 - 3x2^2 - 3x,y, - 12x2^, + ^,^2 + 4̂ :2̂ 2 = 

^i>'i+^2>'2 = ^ ( x , y ) . 

However, if we let z be a covariant vector and define ^(x,z) = A:,Z, + ^̂ 2̂ 2 > then 

MAx,Az) = (x, +3x2)(z, +3z2) + (Jc, +4x2)(z, +4^2) = 

A;,Z, + 3X2Z, + 3x,Z2 + 9x2̂ 2 + x^z^ + 4x2Z, + 4JI;,Z2 + ^̂ 2̂ 2 -

A:,Z| + 7X2Z, + 7J:,Z2 + IOX2Z2 ̂  x^z^ + A:2Z2 = h{x,z). 

Thus, h{x,z) is not an invariant form under SL(2). 

For a second type of example define g(x,z) = x,Z2 - JCjZ, (i.e., determinant). With 

Ax, and Az the same as above, we have 

g(Ax, Az) = (x, + 3^2 )(z, + 4Z2) - (Jc, + 4jt2)(Zi + 3Z2) = 

AijZ, + 3A:2Z| + 4x,Z2 + 12A:2Z2 — x^Zj - 4JC2ZI — 3x,Z2 — 12;c2Zi = 

J:,Z2-X2ZI =g(x,z). 

If we let w be a contravariant vector and define g(y, w) = y^W2 - ^2^1 > we get a similar 

result: 

g(yA-',wA-') = (4y, -y2)(-3w, + W2)-(-3y, +^2X4^,-^2) = 

-12};,w, + 3^2w, + 4y,W2 - y2W2 +12}/,w, - 4y2W^ - 3y,W2 + 2̂1̂ 2 = 

y,W2-j2>v, =g(y,w) 

We will see later that g(x,z) and g(y,w)are both in fact invariant under SL(2). Let the 

letter x represent any covariant vector and the letter y represent any contravariant vector. 
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Therefore, the dot product xy is clearly invariant under any group of nonsingular linear 

transformations since (yA"')(Ax) = yA"'Ax = ylx = yx. 

Let the symbol 

0 = 

y'x' y'x""' 

y""'x' ••• y""'x""' 

Lemma 5.1. If Q ^0, we can introduce a new coordinate system by a unimodular 

transformation such that the covariant vectors x',...,x""' are replaced by the first n-1 

basic vectors e',...,€""', and the n"' component of each of the n-1 contravariant vectors 

y',...,y""'wzero. 

That is if before the transformation we have 

X = 
X 

X 

1 
n-1 

1 
n 

n-1 
,...,x = 

.n-1 

n-1 
•-n-I 

, n - l 

, and 

y' = [yl - yl. yll-.y""'= br' - y::l yr'l 

then after the unimodular transformation we have 

X = 

T 

0 
0 

... x""' = 

"0 

1 
0 

, and 

y' = [y,' - yL o}...,y""'=[yr' - yrJ 

where y'- is the new value for y] from the transformation. 

Proof. First, since Q^O, 

0]. 
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0 = det 

y'x' . • y'x""' 

: • . : 

y""'x' ••• y"-'x''"' 

det 

(-

= det 

V-

\yl - ylJ 

yr ••• y::l_ 

det 

yi 

Ji 
n-I 

* n - l 

yn-

y::l 

..«-i 

S-I 

%-I 

9^0. 

-n-I 

K"-1 
n - 1 

Thus, 

det 
n-1 

"n-I 

^0 and det 
\yl 

yr 

- yl.'] 

- y::l. 

;tO. 

Therefore, both { x ,x%...,x" ' } and {y',y,\..,y" '} are linearly independent. Now a 

new coordinate system, {e,, 62,..., e J can be created by: 

e'=x'e'+...+A:y 

e''"'=x;"'e'+...+x:-'e'' 

e"=z,e'+...+z„e" 

Thus each e' is exactly x' for / e {l,...,n -1} and e" is exactly some vector z that must 

be found.We want our transformation A to be the matrix 

. n - 1 

n n ^n , 

In order to be unimodular we need the condition that det(A) = 1. 
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Let 

M.. = 

^ l • 

x U • 
x' 

- I • 

• xa 
•^z+i 

then we need det(A) = X^"^)**'^*^* ~ ^ * ^^^ contravariant vectors transform 
*=i 

y' = y'A. So to find each component: 

y; = Ay\ + + ^n3'n 

K-i =<'y\ + ••• +<"'>': 

%=z^y\ + . . . +z„y;; 

Now to satisfy the lemma, we need the n' component of the vectors (y ,y ,...,y"" } to be 

zero. In other words we need % = z,y,'+...+z„y^ = 0 for / e {l,...,n -1} . Thus, we have 

system of n equations for the n variables {z,,Z2,---,z„}: 

Bz = 

}'2 

. n - 1 
^ 2 -^1 

M, -M 

yn 

yr 
n+l (-1)""'M, 

[Zi ' 

^ n - 1 

l ^ n . 

= 

"0" 

0 
_1_ 

Thus, we can find a unique z if det(R) ^ 0. Since it was shown earlier that 

{ x',x^...,x""' } are linearly independent in 9t", we can find a vector z'in 91" that is 

linearly independent of {x',x^...,x""'}. Thus, 
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A • 
x\ . 

< • 

z{ 

Z2 

z: 

^ 0, 

Notice that 

x\M, JC2M2 + +(-I)"''^:M„ = 

n-l 

. 1 - 1 

, n - l 
n "n 

= 0. 

Let 

a = = z{M, -z^M2 + ... + ( - 1 ) - 2 ; M „ = 

n-1 
1 
n-1 
2 

, n - l 

^ 0. 

So 

3̂2 

yV yV 
M, -M2 

yn 

n-l 
3'n 

(-l)""M, 

.n-1 

.n-1 

Zl 

^2 

y'x' ••• y'x""' y'z' 

y""'x' ••• y"-'x""' y''"'z' 

0 0 

= aQ^O. 

Therefore, det(B) t̂ 0, so z is uniquely determined. Q.E.D. 

If z' is replaced by z then, by the construction, we get y'z = 0 for all 

/ G (l , . . . ,n-l} and a = 1. So det(B) = 0, and if we let 
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aln>s>3a^..:;s<^ 

N: 

J l 

yf 
yU 
y.] 

yl1 

yL 
yl. 

y::: 

••• yn 

••• y l 

••• yn 

n-l 

then 

Z: = • 
(-l)"^'iV, 

0 

Example 5.1. Let 

y ' = [ 2 0 1], y ' = [ l 0 2 ] , x ' 

1 

2 

0 

,and x^ = 

2 

1 

1 

Then 

0 = 
y'x' y'x^ 

2 1 2 2 

y X y X 

2 5 

1 4 
= 8 - 5 = 3 . N,= 

0 1 

0 2 
= 0,iV2 = 

2 1 

1 2 
= 3, and 

N.= 
2 0 

1 0 

^ ^ , {-ifN, 0 ^ (-1) Â2 - 3 , . 
= 0. So let z, = -̂ ^—-—- = - = 0, z, = -̂ ^—-—- = — = - 1 , and 

' 0 3 ' 0 3 

Thus, 

' 0 3 

A = 

1 2 

2 1 

0 1 

0 ' 

- 1 

0 

, and det(A) = 1. 

So, we get 

e ' = A e ' = 

1 2 

2 1 

0 1 

0 ' 

- 1 

0 

T 
0 

0 

= 

"1" 

2 

0 
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— 2 e' =Ae' = 

1 2 

2 1 

0 1 

0 ' 

-1 

0 

"0" 

1 

0 
= 

' 2 ' 

1 

1 
= x 

y ' = y ' A = [2 0 1 

1 2 

2 1 

0 1 

0 

0 

= [2 5 0] 

y^=y^A = [l 

ri 2 0' 
0 2J2 1 -1 

0 1 0 

= [1 4 0], 

Dot product is an obvious invariant, since by definition: 

(yA"' )(Ax) = yA"'Ax = ylx = yx. 

So the only nontrivial invariant under SL(n) is the determinant. Since the determinant of 

some nxn matrix B is the n dimensional volume of the parallelpiped formed by the 

vectors in the rows of B, the determinant has geometric meaning. Therefore, it should be 

invariant under Sl(n). Thus, we are ready to state our main theorem about the group 

SL(n). 

Theorem 5.2. 

yn 

y: 

and y'x-' 

is the complete table of basic invariants for the SL(n) group. 

Proof. By theorems 4.1 and 4.2, it suffices to show that these form a complete table for n-

1 covariant and n-1 contravariant vectors in 9^". First, we need to show that 
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D, > 
v'vJ 

^l • 

< • 

•• < 

•• < 
' ̂ .v 

>',' • 

y: • 

• y l 

• fn 

, D , ,y"xP, and Z) , ,y"x 
y y 

are all in the table. First for i^ j , 

^ x V X j ' ^ a O ) "^aii) ••^oO) "^a(n) " 

n -\ 

2^^k T T Z u ^ a d ) • •^<J(,) • ^aU) • '^o(n) = 
t=l O''̂ * T 

, ^ a ( l ) • '^oCO • ̂ oU) ' '^a(n) " = 0 

which is trivially in the table. ,If i = j , then by Euler's theorem. 

£>..v 

n n 

= 

x' ••• X 

The result is entirely similar for 

D , j 
y y^ 

>'i ••• yn 

y\ y: 

Again, for i^ j , and P = 7 

^xvy"'̂ ' = 14^(y^A+-+yk4+-+y>i) = ly>i - y"̂ ^ 
it=l ox^ t=i 
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^;i^;^:^j^^^^:ifs^zTr^ '^'^^^^^ '-f^-f^^^^^j^"^ 

which is clearly in the table. If i = 7, and P = ; , then D^j^jy'^x^ = y"x-', by Euler's 

theorem. If ^ ^ j , then D , ^y^x^ = 0. Again, the resuh is similar for D , ;y"x^. 

Since 

is in our table, by Theorem 4.2, we have a complete table for n covariant vectors, and 

since 

y l ••• y l 

y; y: 

is in our table, again by Theorem 4.2, we have a complete table for n contravariant 

vectors. Thus, by Theorem 4.1, we have a complete table for any m>n covariant and 

contravariant vectors. Since 

,.n-I 

..n-1 

, and 
yx yn 

. n - l 
Jl yn 

n-l 

do not make sense (determinants of non-square matrices), we need to show only that 

each invariant form dependent on those n-1 covariant and contravariant vectors can be 

written in terms of the (n-1) dot products y'x-*. From the Lemma 5.1, and the fact that dot 

product is invariant, we have 

y'x '̂ = y'e '̂ = y]. (10) 
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Let fix ,..., x" , y ,..., y" ) be an invariant form under SL(n) such that 

{x ,...,x" ,y ,...,y" '} = {X,Y} satisfy the hypothesis of the Lemma 5.1. 

Then 

/(X,Y) = /(A"'X,YA) = /(e',...,e""',y',...,y"-'). 

Since each e' is fixed, the last/actually only depends on the vectors {y ,...,y" }. Thus 

/(x',...,x""',y',...,y"-') = /(y',...,y""') 

Let Piiy'j}) be the polynomial in the (n-1)^ variables {y'j} such that 

(11) 

P({y'j}) = fiT,:.,y"-l. 

It follows from (10) and (11) that 

?'({y'xM) = /(x ' , . . . ,x"" ' ,y ' , . . . ,y"" ') , 

which holds whenever 0 t̂ 0, and thus is an identity by the principle of algebraic 

irrelevance. So, every invariant form under SL(n) that depends on n-1 covariant vectors 

and n-1 contravariant vectors can be written as a polynomial of the dot product of those 

vectors. Q.E.D. 
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CHAPTER VI 

THE ORTHOGONAL GROUP 0(n) 

A linear transformation A is orthogonal if and only if AA^ = I . An orthogonal 

transformation A is proper if det(A) = 1, and improper if det(A) = -1 . Let 0(n) be the 

collection of all proper and improper nxn orthogonal transformations. It is easy to 

verify that 0(n) is a group with matrix multiplication as its group operator. Let I„ be the 

identity matrix. Obviously, I„(I„)^ = I„I„ = I„, so I„ e 0(n). Let A, Be 0(n), then 

AB(AB)'' = ABB'̂ A'' = AI„A^ = AA'' = I„ , so A B G 0(n). Clearly, A"" = A"', thus 

A"' (A"' y = A"' (A'̂  )•'" = A"'A = I„, so A"' e 0(n). Notice that this holds for both proper 

and improper orthogonal transformation since det(A) = det(A^). Thus, even if A is 

improper, det( AA'^) = det(A}det( A^) = (-1)(-1) = 1= det(lj 

We are going to define an invariant form as even if / (x) = / (Ax) , and odd if 

/ (x) = det( A)/(Ax), where det(A) = ±1. The determinant [x' • • • x" ] is an odd 

invariant. 

[Ax, ••• Ax„] = det 

fV..\ 

det(A)det = det(A)[x' ••• x"} 
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Since det(A) = ±1 , det(A) = (det(A))"'. Thus 

[x' ••• x"]=det(A)[Ax' ••• Ax"]. 

By the Capelli special identity, if /(x',...,x") is an odd invariant then 

Q/(Ax',...,Ax") = ([Ax' ••• Ax"])" 
A „ _ + n - l ••• D 

D. 
' * - " • • ^ A x ' A x ' Ax'Ax 

/(Ax',...,Ax") = 

det(A)([x' ••• x'])"' 
D„„^„+n-l ••• D 

D, • D,, 

(det(A))/(x',...,x") = 

(det(A))^Q/(x',...,x") = Q/(x',...,x"), 

thus Q/is an even invariant. However, if /i(x',...,x")is an even invariant the second 

det(A) will not appear in above and thus, Q/i(Ax',..., Ax") = det(A)iQ/z(x',...,x"). Since 

det(A)=(det(A))"', we have Q;I(X', . . . ,X' ') = (det(A))/i(Ax',...,Ax"). So Qh is an odd 

invariant. If y is an contravariant vector, then y^ is a covariant vector. Since 

(yA"')^ = (yA^)^ = Ay^, we do not have to worry about the distinction between 

covariant and contravariant vectors. 

Both the odd and even invariants are actually absolute invariants for the group of 

proper orthogonal transformations 0^{n) since if A is proper then det(A) =1. On the other 

hand, if/is an absolute invariant of 0''' (n), then 

/ ( x ' , . . . , x " ) = / (Ax ' , . . . ,Ax") 

provided A is proper. Let 
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/ ' (Ax ' , . . . ,Ax") = det(A)/(Ax,...,Ax). 

Then, if/is even then / ' is odd, and if/is odd, then / ' is even. Suppose/is even. If A is 

a proper transformation then 

/ + / ' = / (Ax ' , . . . ,Ax") + / ' (Ax', . . . ,Ax'^) = 2 / a n d 

/ - / ' = / ( A x ' , . . . , A x " ) - / ' ( A x ' Ax") = 0. 

If A is an improper transformation, then 

/ + / ' = /(Ax',.. . ,Ax«) + / ' (Ax' , . . . ,Ax") = 

and 

/ (Ax' , . . . ,Ax")- / (Ax' , . . . ,Ax") = 0, 

/ - / ' = / (Ax ' , . . . ,Ax")- / ' (Ax ' , . . . ,Ax") = 

/(Ax', . . . ,Ax") + /(Ax', . . . ,Ax") = 2 / . 

Thus, / + / ' is even and / - / ' is odd. If/is odd, then by a similar argument, / + / ' is 

odd and / - / ' is even. So, / can be written as the sum of an odd and even invariant: 

f = \if + f')+\if-f')-

Since, intuitively, the only functions in terms of vectors that have geometric meaning are 

length of the vector, and volume of the parallelepiped formed from the vectors (volume 

being related to the length of the vectors and the angles between the vectors), these are 

clearly invariant under rigid rotations (orthogonal transformations). Thus, it makes sense 

that dot product ( square of length) and the determinant (the polynomial that gives 
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volume of the parallelepiped) are the only invariants. We now can formulate our main 

theorem for orthogonal transformations. 

Theorem 6.1. A complete table of typical basic invariants of the orthogonal 

group consist of (I) the scalar product (y,x) and{2) the determinant [x' ••• x"]. 

The product of two determinant factors can be expressed as the determinant of 

their scalar products: 

b ^"][y' - y"] = det det 
3'i 

fn ••• y: 

det 

j y 

det 
>'i 

det 

yi 

3'. ••• >', 

y : ••• y : 

.nl\ 

yn Yn 

(x' ,y') - (x',y") 

{x',y') ••• {x",y"> 

We may rewrite the theorem as follows: 

Statement T̂ *") a) Every even orthogonal invariant depending on m vectors 

{x',...,x'"} in 9^" can be expressed in terms of the m^ scalar products ^x',x-'^. 

b) Every odd invariant is a sum of terms [u' • • • u" ] /* (x',..., x"") where 

{u ,...,u"} c {x ,...,x'"} and f is an even invariant. 

Proof of this theorem is by using Theorems 4.1 and 4.2 to show 3 inductive steps: 

I)T:: , '^T:" ' 
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2) T""' =» T" 

3 ) T ; ^ T ; {m>n). 

The details follow. 

Proof: Proof of this theorem is by induction on rank and number of vectors. 

Base case: T,'.. Let/be an even invariant under 0(1). If Ae 0(1), then A = ±1. Let A=-l, 

and / (x) = / (x) = /(Ax) = / ( - x ) . This occurs when / (x) is an even polynomial, 

fix) = a^x" +aj_,x^*"V...+a,x^ +ao = a^(x^)* +a^_,(x^)*"'+...+aj(x^)' +ao(x^)°, thus 

fix) is expressible in the 1̂  scalar products (x,x) = x^. It's trivial when A=l. 

Now let/be an odd invariant. So, if A=l, then 

fix) = fix) = det( A)/(Ax) = fix). 

Thus, we need to look the case A=-l. Then 

fix) = fix) = det(A)/(Ax) = -fi-x). 

This occurs when / (x) is an odd polynomial. Thus, 

fix) = â A;̂ *̂ ' +a;^_,x^*"'+...+a,x^ +^0^ = x(a^J:^* +ai_,x^*"^+...+a,x^ +^0) = 

xf*ix) = [x]f\x), and 

/*(x) = aiX^*+a4_,x^*"^+...+a,x^+ao 

is the prescribed even invariant. 

Induction step T"r,' =^ T„"" . 

Let / ( x ' , . . . , x""') be an even invariant depending on n-1 vectors in 9t" such that 

xi =Oforall / e { l , . . . , n - l } . 
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^,^r?^^,-^r~^t.J.,t^^.:>*Tf--j^—^-<.tl-'ii*^lr.irM^tH^^ 

/oCXp...,x„_,) — JQ 

V'''n-I 

n-1 A 

c""' , V iy 

'-1 
= f 

.n-l A 

n—\ n—\ 

0 ••• 0 

Assume /,, to be an odd invariant. Let 

A = 

1 0 

0 •• . 

0 ••• 

' ^ 

1 

0 

0 
• 

0 

-1 

Then since/is an even invariant, 

/o =/(x,,...,x„_,) = /(Ax,,...,Ax„_,) = det(A)/o = - / o . 

Thus, /o = 0. So, /o is an even invariant. Notice that /Q depends on n-1 vectors in 9t""', 

thus, by the T"r,' hypothesis, /^ can be written as a polynomial P in terms of the 

(n -1)^ scalar products 

(x',x'>, - {x',x""'), 

(x""',x'), ••• (x""',x""') 

where x' is a vector in Si and xj = x) for all i,j e {l,...,n - 1 } . Thus, it suffices to 

show that there exist an orthogonal transformation A such that 

Ax' = 

x: 

"•n-l 

0 
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Since x' ,...,x""' G 91", there exist z e 9?" such that z is perpendicular to each x' , and 

y(z,z) = 1. Now, by the Gram-Schimdt method, we can construct a new orthonormal 

coordinate system {e' ,e^,...,e"} such that z = e". Let A be the orthogonal transformation 

that takes the standard coordinate system {e',e^,...,e"} to {e',e^...,e"}. That is let 

A = 

r̂ i 

el 

By definition of orthonomal basis, (x',x*) = 0if i ;t ^ , and ^x',x*) = 1 if i=k. Thus, 

A 'A = 

e' 

el 

•(e',e') (e',e^) 

( e^e ' ) ••. 

(e",e') -

••• (e',e")-

(e""',e") 

(e",e""'} (e",e") 

1 0 

0 ••. 

: 

0 ••• 

... 0' 

: 

•. 0 

0 1 

Therefore, AeO(n). Since each x' is orthogonal to e", the n' component in each Ax' 

will be zero. Thus, since/is an even invariant, 

/(x',...,x""') = /(Ax',...,Ax""') = /o(x',...,x""') 

where x' e 9?""', and x) = (Ax' )^.. Since A e SL(n), 

( X ' , X * ) = ( A X ' ' , A X * ) = ( X ' , X * ) . 
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Therefore, 

/(x',...,x""') = ?' 

^^{x',x')^ 

(x""',x') 
y 1 

^{x',x""')^^ 

(x""',x""') 

So/is expressed as a polynomial of the dot products of n-1 vectors in 9?" 

Example 6.1. Let 

X = 

"f 
2 

1 

and x^ = 

"l" 

1 

1_ 

X and X are clearly linearly independent. Let 

z' = x' xx^ = 
1 

0 

-1 

and z = 
(^'.^') 

1 

-1 . 

V2 
0 

Then z is clearly orthogonal to x' and x^. By the Gram- Schmidt method, we are going 

to find an orthonormal basis {e', e^, e^} such that z = e^. So let 

'^3 

e =z . 

e ' = x ' -
(z,z) z = 

e = {e'.e'> 

A/6 
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Then 

Thus 

and 

e ^ = x ^ -
{z,x^> {e',x) ^ 

• z -

M {e',e') e = - 1 / , and 

e^=-
e^ 

(e )^e^ 

/ 3 

A = 

A/6 A/6 

X/2 ° -1 
V2 

x'=Ax' = 

/V6 

/ 3 

/VJ 

A/6 A/6 rn rn 
- V - ^ V3^ 2 = 0 

0 -/^ji\ [o\ 

TA x'=Ax' = 

A/6 A/6 A/6 
V3/ -V3/ Vs/ 

/3 /3 /3 

4. 
'6 

^ ^ 
0 

Induction step T„"" => T„": 

Proof of this is very similar to the proof of Theorem 4.2. The proof is by induction on 

rank. Again, we may assume p > 0. 
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Base case: Suppose/has rank (n,l,l,...,l). Then, /^ =-p^D^p,^„, / has rank 

(n, 1,...,0,...,2,...,1) and is expressible in n-1 vectors. Also, the rank of Qf is (0,0,...,0). 

Therefore, Q/is just a constant. Thus, by the Capelli special identity, and theT„""' 

hypothesis, the conclusion holds. 

Induction step: Assume that every even invariant with rank less than/can be expressed 

in terms of the dot products of its vectors, and every odd invariant with rank less than/ 

can be expressed by 

xl 
f. 

where / is an even invariant. First suppose that/is even. Then by Capelli's special 

identity we have 

P / = S P K / K + [ x ' , • . • , x " ] n / , w h e r e / , = - p , D ^ „ ^ „ , / . 
K 

/^ is an even form with rank less than/ Thus, /^ can be expressed in terms of the dot 

products. P̂  is just succession of polarizations which, as shown in the unimodular group 

section, take a polynomial in terms of dot product to another polynomial in terms of dot 

product. Thus, ^ P ^ / K is expressible in terms of the dot products | (x ' ,x*U. Since/is 
K 

even, Q/ is odd, and the rank of Qf is less than the rank of/ Therefore, by the 

induction hypothesis, Qf can be expressed as [x",..., x' ] / , where / is expressible in 

terms of the dot products. So, 
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[X",...,X']Q7 = [X",...,X'|X",...,X']7 = 

/ = 

{x",x"} ••• {x",x') 

(x',x") - (x ' .x ') 
/ . 

Thus, [ X " , . . . , X ' ] Q 7 is expressible in terms of the dot products | (x ' ,x*) j . Therefore, 

/ (x' , . . . , x") is expressible by the dot products | (x ' , x* U.. Now suppose/is odd. Then 

Qf is even and/is of the form we want. /^ = - p ^ D p̂,̂ „, / is odd and has less rank than 

/ So /^ can be expressed by [x",...,x' ] / where / is some even invariant, and, by the 

same argument as for the even invariants, ^ P^/. can be expressed by [x",...,x' ] / . 
K 

Thus, by Capelli's general identity,/is equal to an even invariant times the determinant 

[x",..., X']. Thus, by induction, T̂ ""' =^ T„". 

Induction step T" =^ T" im>n): 

Since it was shown earlier (Chapter V) that 

and D, ,x"x^ 
v ' v ' 

can be expressed by [x",..., x' ] and (x' ,x ' ' ) , this induction step follows directly from 

Theorem 4.1. Q.E.D. 
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