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ABSTRACT 

In this paper, we study the Dif ie-Hellman key exchange on matrices over a field, 

GL{n, q), and over a ring, Mn{R)- We show that Jordan Canonical form is not defined 

for a matrix A G Mn{R), and we present a cryptosystem capitalizing on this notion. 
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CHAPTER I 

INTRODUCTION 

Before Whitfield Diffie and Martin Hellman introduced public key cryptography 

to the world in 1976, the major method of keeping information secure was by the 

use of a secret key. Indeed, one of the earliest cryptosystems based on a secret key 

encryption was the Caesar Cipher, which basically shifts each letter of the alphabet 

over n spaces. Caesar would send messages to his generals in the field encrypted using 

his Caesar Cipher, and hope that no member of the opposing army intercepted the 

message or the key. When an enemy did get hold of the key and the message, they 

knew all that the Roman army knew, and more. 

Diffie and Hellman saw the inherent flaws in secret key cryptography, and proposed 

a method by which anyone could encrypt a message using someone's public key, 

but only that someone could decrypt the message. In order to accomplish this, the 

encryption must be relatively easy to do, but the decryption of the message must be 

based on a so-called "hard" problem. In fact, the basis for security in most public 

key schemes is integer factorization, and the discrete logarithm problem [4]. 

One such system that utilizes the discrete logarithm problem is the Diffie-Hellman 

key exchange. The Diffie-Hellman key exchange is a protocol whereby two users, 

Alice and Bob can, by a sequence of transmissions over a public channel, agree upon 

a secret cryptographic key. Alice and Bob first choose a (multiplicatively written) 

finite abelian group G and some element a e G. Alice then selects an integer a at 

random and transmits a" to Bob. Bob chooses a random integer b and transmits a'' 

to Alice. Both Alice and Bob can then determine a"'', which is their shared secret 

key [1]. 

An eavesdropper Oscar monitoring the transmissions between Alice and Bob 

would know G, a, a" and a". Therefore the parameters G and a should be cho-

sen so that it is computationally infeasible to determine the secret key a'^". The 

problem of determining a given a and ^ = a'^ is known as the discrete logarithm 



problem. Numerous groups have been proposed for cryptographic use that capitilize 

on the difficulty of solving the discrete logarithm problem. One such group proposed 

is the group of non-singular matrices over a finite field, GL{n,q) [6]. 

In 1998, Menezes and Wu showed how the discrete logarithm problem in GL{n, q) 

could be reduced in probabilistic polynomial time to the logarithm problem in small 

extensions of the finite field F, [2]. It has also been shown that the Index-Calculus 

method for determining the discrete logarithm in a finite field takes subexponential 

time [4]. Thus, the group GL{n,q) offers no significant advantage over finite fields 

whose security is based on the difficulty of computing discrete logarithms in a group. 

This thesis explores the Diffie-Hellman key exchange in GL{n,q) and in M„(i?). 

We present a cryptosystem capitilizing on the notion that Jordan Canonical form is 

not defined for a matrix over a ring, and thus the group of matrices over a ring Mn{R) 

oflFers an advantage over the group GL{n, q). 



CHAPTER II 

ALGEBRA AND LINEAR ALGEBRA 

2.1 Finite Fields 

In this section, we will review some definitions and properties of finite fields. 

Definition 2.1.1 (Finite Field). A finite field is a field F which contains a finite 

number of elements. 

Definition 2.1.2 (Characteristic of a Field). The characteristic of a field F is 

the least positive integer n such that 

a + a-\ |-a = 0 
> ^ ^ 

n 

for allaeF. 

Proposi t ion 2.1.1. [3] If ¥g is a finite field of order q = p"", p prime, then the 

characteristic of F, is p. Moreover, Zp is a field and hence every finite field of order 

p is isomorphic to Zp. 

We wiU see later that the following representation of a finite field is very useful. 

Proposi t ion 2.1.2. Let f{x) G Zp[x] be an irreducible polynomial of degree m. Then 

1p[x\l{f{x)) is afinitefield of order p^. Addition and multiplication of polynomials 

is performed modulo f{x). 

Definition 2.1.3 (Order of an element). The order of an elementa e Zp[x]/{f{x)) 

is the integer e such that a' = 1 mod f{x). Ifa is a primitive element ofZp[x]/{f{x)), 

the order of a is p^ - l. 

2.2 Matrices 

This section will review some basic definitions and properties of matrices. To 

begin with, we will denote M„(Fq) to be the set of all n x n matrices with entries 



from a finite field F , , and we will denote M„(i?) to be the set of all n x n matrices 

with entries from a ring R. We will denote the rank of any matrix A by r{A). 

Definition 2.2.1 (General Linear Group). The general linear group, denotedGL{n,q) 

or GL{n,F, ), is the set of all non-singularnxn matrices over¥q under matrix mul-

tiplication. 

n - l 

The order of GL{n,q) is f ] (g" - q') [2]. 
1=0 

Definition 2.2.2 (Characteristic Polynomial, Eigenvalues). Let A e M„(F, ). 

The characteristic polynomial of A is PA{X), where PA{X) = det{A - Ix); PA{X) is a 

polynomial of degree n in F, [x]. Let E denote the splitting field of PA{X) over F, . 

The roots Ai, A ,̂ A3,... , A„ of PA{X) in E are the eigenvalues of A. 

Definition 2.2.3 (Eigenvector). Let A be an eigenvalue of A. A nonzero vectoru 

is called a generalized eigenvector of rank t corresponding to X if{A- XlYu = 0 and 

{A - xiy-^u ^ 0. 

2.3 Jordan Canonical Form 

In this section we review the Jordan Canonical form of a matrix. It is important 

to note that any matrix with coefficients in an algebraically closed field can be put 

into Jordan Canonical form [3]. 

Definition 2.3.1 (Jordan Block). A Jordan block of order d corresponding to X is 

a dx d upper-triangular matrix of the form 

'̂  A 1 0 ••• 0 0 \ 

0 A 1 ••• 0 0 

0 0 A 
^d(A) = 

0 0 0 

0 0 0 

0 0 

A 1 

0 A 



A Jordan matrix is a direct sum of Jordan blocks. 

Proposition 2.3.1. [5] For every matrix A e Mn{¥g ) there exists a matrix Q e 

GL{n,E) such that Q~^AQ = JA, where 

JA = JnA^l) ® • • • ® Jnsi^s) 

is a Jordan matrix, Ai, A^,... , Â  are the eigenvalues of A (not necessarily distinct), 
s 

d yjî^i = n. 
s 

an ' 
i-l 

The Jordan matrix JA is unique up to rearrangement of the component Jordan 

blocks and is called the Jordan Canonical form of A. 

Proposition 2.3.2. [2] Let X be an eigenvalue of A e GL{n,q) of multiplicity m. 

1. Ifc is the smallest positive integer for which rank{A-XlY = rank{A-XI)"'^^, 

then the number of Jordan blocks corresponding to X is n - rank{A - XI), and 

c is the size of the largest such block. 

2. The number of Jordan blocks of size at least k in JA corresponding to X is 

rank{A - XI)'"'^ - rank{A - XI)^. 

3. The number of Jordan blocks of size exactly k in JA corresponding to X is 

rank{A - A/)'=+i - 2rank{A - XI)'' + rank{A - A7)'=-^ 

The following theorems provide us with a way to determine the order of a matrix 

A e GL{n, q). This wiU be useful to us later. 

Theorem 2.3.1. [2] The order of the Jordan block J = Jd(A) is ord{X)p{d}, where 

p{d} denotes the smallest power of p greater than or equal to d. 

Proof [2] Let 5 = ord{X) and u = p{d}. Because ord{X) = p - - 1 for some m 

and u = p{d} is a power oí p, then gcd(s,u) = 1. It can be shown that J ' is an 

upper-triangular matrix with (̂ , j)-entry equal to A ' - ^ + H , - Í ) îorl<t<j<d. Thus 

J ' = 7 if and only if A' = 1 and {[) = 0 (mod p) for each 1 < k < d - l. Now, 



since tx is a power of the characteristic p, (1 + x) '" = (l-t- x")Mn Zp [x]. Computing 

coefficients of x'' yields (7) = 0 (mod p), for each 1 < k < u - l. Since A "̂ = 1, it 

follows that J ' " = / and so ord{J)\su. Suppose now that ord{J) = sw, where w is a, 

divisor of u, u; < u. Since J'"" = I, we have (7) = 0 (mod p) for each l<k<d-l. 

In particular, ('J) = 0 (mod p) since w < d-l. But equating coefficients of x"" in 

{l+x)'"" = {l+x"")' yields (*J) = s (mod p) where s ^ 0 (mod p), thus contradicting 

the previous statement. We conclude that ord{J) = su, as required. • 

Theorem 2.3.2. [2] Let A e GL{n,q). Let the distinct eigenvalues of A in E be 

Ai, A2,... , A„. Then the order of A is 

ord{A) = lcm{ord{Xi),ord{X2),... , ord{Xn))p{t} 

where t is the size of the largest Jordan block in JA-

Proof. [2] Let the Jordan Canonical form of A be JA = Ji e J2 0 • • • 0 Js, and let 

Q e GL{n,E) be a matrix such that Q-^AQ = JA- Then ord{A) = ord{JA) = 

lcm{ord{J,), ord{J2), • • • , ord{Js)). The result now follows from theorem 2.3.1. • 



CHAPTER III 

PUBLIC-KEY CRYPTOGRAPHY 

3.1 The Diff"e-HeIIman Key Exchange 

Suppose users Alice and Bob want to exchange information over a non-secure 

channel. Alice and Bob can use the Diffie-Hellman key exchange to agree upon a 

secret cryptographic key. 

The method is as follows. Alice and Bob first choose a finite abelian (multiplica-

tively written) group G, and some element aeG. Alice then selects a random integer 

a and transmits a" to Bob. Then Bob selects a random integer b and sends a'' to 

Alice. Now, both Alice and Bob can determine their shared secret key, a"''. 

The Diffie-Hellman key exchange is presented in the figure below. 

Step 1: Alice chooses an integer a at random. 

Step 2: Alice computes a" and sends it to Bob. 

Step 3: Bob chooses an integer b at random. 

Step 4: Bob computes a'' and sends it to Alice. 

Step 5: Alice computes 

{a") b\a 
a 

ab 

and Bob computes 

ab {a")'' = a' 

Thus a"'' is their shared secret key. 

Figure 3.1: Diffie-Hellman key exchange [4] 

Suppose that Oscar is monitoring the transmissions between Alice and Bob. Oscar 

then knows G, a, a" and a''. Therefore, the parameters G and a should be chosen so 

that it is computationally infeasible for Oscar to then determine a"'' [l]. 



However, determing a"-" reduces to determining a or b. But, the problem of finding 

a, for example, given a and /3 = a", is the Discrete Logarithm Problem which wiU be 

described in the next section. 

We wiU now provide a trivial example of the Diffie-Hellman Key Exchange. 

Example 3.1.1. Let G = 1% and let a = 3 e Z5. Suppose Alice chooses a random 

integer a = 74 and transmits 

a " = 3^^ mod 5 = 4 mod 5 

to Bob. Bob selects a random integer 6 = 55 and transmits 

a'' = 3^^ mod 5 = 2 mod 5 

to Alice. To find their shared key, Alice computes 

^ab ^ ^ba ^ f^^by ^ (3)^^ mod 5 = 4 mod 5 

and Bob computes 

a"'' = {a")" = (4)^^ mod 5 = 4 mod 5. 

Thus, 

a 
ab _ ^ 

is their shared secret key. 

3.2 Discrete Logarithm Problem 

Many public-key cryptosystems are based on the difficulty of the discrete logarithm 

problem, denoted DLR The following figure describes the problem (Figure 3.2). 



Problem Instance: G is a finite group, a e 

G, 13 e<a >. 

Objective: Find an integer a, such that 

We will denote this integer a by log^ p. 

Figure 3.2: Discrete Logarithm Problem [1] 

There currently is no polynomial-time algorithm for the DLP over Z*, but in order 

to prevent known attacks, p should have at least 150 digits, and p - 1 should have at 

least one large prime factor [1]. 

As is the case for the DLP in Z*, if the group G is chosen carefully, the DLP is 

an extremely difficult problem to solve. However, the DLP for ^ can be solved in 

subexponential time using the Index Calculus method [4]. Over the years, numerous 

groups have been suggested as possible candidates to make the DLP difficult to solve. 

One such group is the group of non-singular matrices over a finite field, GL{n,q). 



CHAPTERIV 

THE DIFFIE-HELLMAN KEY EXCHANGE IN GL{n, q) 

4.1 Reduction to Jordan Canonical Form 

As stated earlier, any matrix with entries from an algebraically closed field can 

be reduced to Jordan Canonical Form. The following algorithm reduces a matrix 

A e GL{n, q) to Jordan Canonical Form. 

Algorithm 4.1.1. [2] 

Input: A matrix A e GL{n, q) 

Output: The Jordan Canonical form JA of A 

1. Use the Hessenberg algorithm to find the characterisitc polynomial PA{X) of A . 

2. Find the factorization ofpA^x) over¥g using, for example, Ben-Or's algorithm: 

PJ^{X) = f^'f^^ • • • / 1 % where each fi is an irreducible polynomial of degree m^. 

Let the roots of / , in Fqm. be a^j, l < j < m^. Note that we may conveniently 

represent the field F,m, as ¥g[x]/{fi{x)). In this representation, we simply have 

an = X, and a^j = x"''' mod fi{x) for 2<j<mi. 

3. For i from 1 to s, do the following: 

(a) Set ro <— n 

(b) Compute{A-aiJ)'' andra^r^A-anl)" fora = l,2,... ,c,c+l,where 

c is the smallest positive integer such that r^ = rc+i 

(c) Let Ja be the direct sum of (r,+i - 2ra + Va-i) Jordan blocks of order a 

corresponding to an, 1 < a < c. 

(d) Let Jij be the same matrix as Ja but with an replaced by aij, 2<j<mi 

(e) Set Ji<— Jíi e Jí2 ® • • • ® Jimi^ 

4. Set JA<— Ji ® J2 ® • • • © Js-

10 



Theorem 4.1.1. [2] Algorithm 4.LI takes expected polynomial time. 

Proof. [2] Hessenberg's algorithm takes polynomial time while Ben-Or's algorithm 

takes expected polynomial time. In each iteration of Step 3, the computations are 

performed in the field F,m,. Since m^ < n, we have logg"*' < nlogq-, and so each 

iteration of Step 3 takes polynomial time. Finally, since Step 3 is iterated s times, 

and s < n, we see that the expected running time of Algorithm 4.1.1 is bounded by 

a polynomial n and logq. • 

We wiU now present an example of such a reduction. 

Example 4.1.1. Let ¥g be the finite field Zu, and let A e Ma^Zn) such that 

/̂  6 2 1 ^ 

A = 3 4 9 

Y 10 0 7 y 

First, we will use the Hessenberg algorithm to find the characteristic polynomial PA{X) 

of A, which is 

PA{X) = X^ + 5X'^ + X + 9. 

Next, we will use Ben-Or's algorithm to factor PA{X) over Zu[x]: 

PA{X) = {X'' + 10X + 7){X + 6). 

Each of x^ + 10X + 1 andx + 6 are irreducible polynomials of degree 2 and degree 1, 

respectively. Now, we find the roots of x^ + 10x + l andx + 6 in Zu^. 

We do so by representing the field Zu^ as Zn/{x^ + lOa; + 7) and hence 

an=x,ai2 = x'' mod x ' + lOx-h 7 = lOx-fl 

are the roots of x^ + lOx + 7. The root of x + 6 is a^i = - 6 mod 11 = 5 mod 11. 

Next, we set ro = 3 and then compute {A - a^J)" and r^ = r{A - aiJY for a = 

1,2,... ,c, c + 1 , where c is the smallest positive integer such that r^ = rc+i 

11 



{A - anl) = {A- xl) = 

where r^ = r{A — xl) = 2, and 

( 

\ 

6-x 2 1 

3 4 - a ; 9 

10 0 1-x 

í 

{A - anlf = {A- xl)^ = 

(6 - x)^ + 16 20 - Ax 31 - 2x \ 

120 -6x 6 + (4 - x)^ 102 - 18a; 

\̂  130 - 20x 20 10 + (7 - x)2 J 

such that r2 = r{A - xl)"^ = 2. 

Thus, for an = x, c= 1, and so we let Jn be the direct sum of 

{ra+i - 2ra + ra-i) = (r2 - 2ri + ro) = 1 

Jordan block of order 1 corresponding to an, i-e., Jn = [x]-

Doing the same for a^ and a^i, we get J12 = [lOa; + 1] and J21 = [5]. Thus the 

Jordan Canonical form of A is 

JA = 

/ 

V 

a: 0 0 

0 lOx + l 0 

0 0 5 

\ 

/ 

4.2 Reduction of the DLP 

In this section, we will examine the DLP in GL{n, q). As we mentioned earlier, to 

decrypt a message sent using the Diffie-Hellman key exchange, we only need to find 

/ given B = A' where A,Be GL{n,q). This DLP in GL{n,q) can be reduced to the 

DLP in small extensions of F, . 

The following algorithm does such a reduction. 

Algorithm 4.2.1. [2] 

Input: Matrices A,B e GL{n, q) with 

Output: The integer l. 

12 



L Use the Hessenberg algorithm to find the characterisitc polynomial PA{X) of A . 

2. Find the factorization ofpA^x) over¥q using, for example, Ben-Or's algorithm: 

PA{X) = fi^f^^ • • • fs% where each fi is an irreducible polynomial of degree m^. 

Let the roots of fi in ¥gmi be a^j, 1 < j <mi. Note that we may conveniently 

represent the field ¥gm, as ¥g[x]/{fi{x)). In this representation, we simply have 

an = x, and aij = x'^^ mod fi{x) for 2 < j •< m^. 

3. For i from 1 to s, do the following: 

(a) Compute^A-anI)" andr^ = r^A-aiJ)" for a = 1,2,... ,c,c+l, where 

c is the smallest positive integer such that r^ = rc+i. 

(b) Find an eigenvalue fin corresponding to a^ by solving {A - anl^y = 0. 

(c) Construct a matrix Qn e GL^n^q"") whose first column is p,ii 

(d) Compute Dn <— Q'^ BQn 

(e) The (1,1) entry of Dn is a'^^, and so one can find l modulo ord^an) by 

solving a discrete logarithm problem in ¥gmi. 

l Let t be the maxilmum of the c values found in step 3, part (a). Ift>l, then 

do the following: 

(a) Let X e ¥gm be an eigenvalue which has a corresponding Jordan block of 

size t. 

(b) Find a basis Bi for N{{A - XlY'^). 

(c) Find a basis B^ for N{{A - A7)*). 

(d) Hence find a vector u in B2 which is not in the subspace spanned by B,. 

(u is a generalized eigenvector of rank t.) 

(e) Set ut <— u, and Uj <— {A - XI)uj+i for j = t - l,t - 2,... ,2,1. 

(f) Construct a matrix Q e GL{n, q"") whose first t columns are ui, U2, • • • , Uf 

13 



(g) Compute Q'^AQ and D <— Q'^BQ. 

(h) The (1,1) entry of D is X' and the (1,2) entry of D is lX'-\ Ifp{t}=P, 

then first compute A'"^ as X'/X, and then divide IX'-^ by X'-^ to obtain l 

mod p. 

(i) If p{t} > p^ then let J be the t x t Jordan block in the upper-left hand 

corner ofQ-^AQ. Set s <— ord(A), l' <— / mod s (which was computed 

in step 3), and compute J' ', J' '+^ J''+^^ . . . until J''^^' is equal to thetxt 

matrix in the upper left-hand corner of D. Then l mod p{t} = j . 

5. Find l mod ord{A) by using the generalized Chinese Remainder Theorem. 

Theorem 4.2.1. [2] Algorithm 4.2.1 is an expected poynomial-time reduction of the 

discrete logarithm problem in GL{n, q) to the discrete logarithm problem in Fgm;, 

l<i<s. 

Proof. [2] Hessenberg's algorithm takes polynomial time, while Ben-Or's algorithm 

takes expected polynomial time. Each iteration of Step 3 involves linear algebra over 

¥gmi where m^ < n. Since log?"'- < nlogg and s < n, Step 3 is a polynomial time 

reduction. Finally, Step 4 involves linear algebra over F^m, where m<n. líp{t} > p^, 

then p{t} < n^, and so the process of computing J''+^^ in Step 4, part (i) is iterated 

at most n^ times. This proves the statement of the theorem. • 

We wiU now provide an example of the reduction of the DLP in GL{n,q) to the 

DLP in small extensions of F,. 

Example 4.2.1. Let ¥g = Zu and let 

I R O 1 \ 

A 

6 2 1 

3 4 9 

\̂  10 0 7 ̂  

/̂  3 8 8 ^ 

B 

\ 

4 2 10 

8 8 8 / 

14 



where A,B e GL{3, Zn), and B = A'. 

Our goal is to determine l. As in example 4-2.1, we find the characteristic polynomial 

of A to be 

PA{X) =X^ + 5X'^ + X + 9 = {X'^ + lOa: + l){x + 6) 

and we find the roots of x"^ + lOx + 1 to be a u = x and ayi = lOx + 1, and the root 

of x + Q to be «21 = 5. 

Now we find an eigenvector fin corresponding to an by solving {A — xl)y = 0, i.e., 

/ « _ o 1 \ / u ^ / n \ 0 

0 

6-x 2 1 

3 A-x 9 V 

y i O 0 1 -X I \^w j 

This is done much in the same way as would be done in Ms^Z). First, we reduce the 

matrix {A - anl) = {A- xl) using Gaussian elimination, keeping in mind that all 

calculations are done in 'Ln[x]/{x'^ + lOx + 7). Tíence 

/ 

v 

6 - a ; 2 1 

3 A-x 9 

10 0 1-x 

\ 

reduces to 

í 1 0 x + 4 \ 

0 1 5a; + 7 

\̂  0 0 0 y 

Then we solve for 

I u\ 

\w ) 

í n\ ' 
and get /LÍU 

\w ) V 

102; + 7 

6a; + 4 

1 

\ 

/ 
The ezgenvalues correspondmg to lOx + 1 and 5 are found in the same manner and 

/ . . . \ Í2\ 

are fiu = 

V 

x + 6 

5X + 10 

1 

and ^21 = 4 

\'J 

, respectively. 

15 



Next, we construct a non-singular matrix Qn e GL(3,Zu2) whose first column is 

^ lOo; + 7 x + 6 0 ^ 

Q\\ = 6a; + 4 2x 5 

1 9x + 7 X 
\ / 

where 

Qn = 

I 

\ 

10 o; 6 

6x + 1 3a; + 6 9x + 9 

5a; x + 6 a; + 5 

\ 

Doing the same for fiu and ^21, we get 

^ x + 6 2x 1 \ 

bx + 10 3x + 9 X + 2 

1 8x + 1 5 

and 

Ql2 = 

\ 

,Q\' Í12 

\ 2x + 9 x + 1 x + 8 

9x + 5 x + 2 6x + 4 

\̂  4x + 10 8x + 4 9x + 10 y 

Q21 = 

/ 

V 

2 7 10 

4 1 0 

1 4 3 

\ '̂  6 5 2 ^ 

1V21 ~ 

/ 

9 3 3 

8 9 3 

Now, we compute L>u = QnBQn, Dn = QnBQ\2 and D21 = Q2IBQ21, but we 

are only concerned with the (1,1) entry of each of these three matrices, which is 

a[^ = 7x + 8, a'i2 = 4x + 4 and a^i = 1, respectively. 

Next, we must compute the order of the roots x, lOx + 1, and 5. These are 120, 120, 

and 10, respectively. 

Thus, we can find l modulo ord{a,j) by solving discrete logarithm problems m Zu[x]/(x2+ 

lOx + 7) ancí Zu . 

We can find l for Ix + 8 = x' mod 11, 4x + 4 = (lOx + 1)' mod 11, and 1 = 5' 

mod 11 using a vanety of methods, includmg the Index-Calculus algonthm and the 

Brute force method to name a couple. We use brute force to find that 

20 = / mod 120 

16 



20 = / mod 120 

10 = / mod 10. 

Fmally, we find l mod ord{A) using the Generalized Chinese Remamder Theorem. 

Hence 

1 = 20. 

This is the integer we are looking for as we can see when we let l = 20 in our original 

problem A' = B. 

( 

A'" = 

V 

6 2 1 

3 4 9 

10 0 7 

V 20 / \ 
\ ' 3 8 8 ^ 

V 

4 2 10 

8 8 8 

= B 

17 



CHAPTER V 

THE DIFFIE-HELLMAN KEY EXCHANGE IN M„(7?) 

5.1 Jordan Form 

As we have stated before, any matrix with coefficients in an algebraically closed 

field can be reduced to Jordan Canonical form. So, what about a matrix A e Mn{R), 

where 7? is a ring? Can we reduce A to Jordan Canonical form using traditional 

methods or the algorithm described in Section 4.1? 

Eigenvalues are not defined for a matrix A e Mn{R), where 7? is a ring. Since 

there is no definition of eigenvalue for a matrix A, then characteristic polynomial is 

not defined for A. As a result of this, Algorithm 4.1.1 and Algorithm 4.2.1 cannot 

be implemented, as the first step in both algorithms involve finding the characteristic 

polynomial of a matrix. 

Now, we will provide an example which illustrates how a matrix over a ring cannot 

be reduced to Jordan Canonical form using Algorithm 4.1.1 or traditional methods. 

Example 5.1.1. Let R = ZQ and let 

A = 

Hence the characteristic polynomial PA{X) of A is 

PA{X) = {X-2){X-3). 

Setting PA{X) = 0 gives the eigenvalues of A: x = 3,x = 2. However, if we expand 

( x - 2 ) ( x - 3), we get 

( x - 2 ) ( x - 3 ) = x 2 - 5 x + 6. 

Alas, x^ — 5x + 6 modulo 6 is x'^ — 5x, and setting x^ — 5x = 0 yields x^ — 5x = 

x{x — 5) = 0 . Thus, X = 0 and x = 5 are also eigenvalues of A. 

But as eigenvalues are defined, there should only ben = 2 eigenvalues for the matrix 

A. Thus, we can conclude that the eigenvalues for the matrix A are undefined. 
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As the reduction of a matrix A to Jordan Canonical form is based on finding 

eigenvalues for the matrix A, we can conclude that the reduction of a matrix A e 

Mn{R) cannot be done using Algorithm 4.1.1 or traditional methods. 

5.2 Cryptosystem 

In this section, we will present a public-key cryptosystem which makes use of the 

Diffie-Hellman key exchange in matrices over a ring. 

This cryptosystem's security is based on the difficulty involved in reducing a ma-

trix with ring entries to Jordan Canonical form. During the Diffie-Hellman key ex-

change over matrices in M„(7Î), if Oscar cannot reduce a matrix to Jordan Canonical 

form, then he cannot obtain the secret cryptographic key. Thus any cryptosystem 

which uses the secret key during encryption and decryption wiU be sufficiently difficult 

to break. 

The cryptosystem is as follows. 

Step 1: Alice and Bob use the Diffie-Hellman key exchange to find the shared secret 

cryptographic key A"'' = B e M„(7?). 

Step2: Alice and Bob map B into a group G which gives an element Bg e G (An 

example of this mapping will be described later.) The group G is public information. 

Step 3: Alice encrypts a message M G G by multiplying M and Bg ,i.e. M * Bg = Y 

and sends Y to Bob. 

Step 4: To decrypt the message, Bob computes the inverse of Bg and recovers the 

message M by computing Y * B'^ = M 

5.2.1 Example 

Now, we will provide an example of the cryptosystem. 

Example 5.2.1. Alice and Bob perform the Diffie-Hellman key exchange over M^^Zio). 
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Let 

A = 

6 2 1 

3 4 9 

9 0 7 

Alice sends Bob 
( 

A" = A^ 

Bob sends Alice 

A^^A^ 

( 

V 

9 8 6 

4 8 5 

0 6 7 

3 4 6 

0 8 1 

6 2 3 

\ 

\ 

Thus the shared secret cryptographic key is 

^ 1 8 8^ 
ab /(54 ^ a o ^ j ^ 

\ ) 

6 8 9 =B. 

4 2 9 

The group G is Zu = {(^i, ^2, • • • , g^)\gi ^ ^ î i ) '^iih multiplication defined componei 

wise: 

(xi,X2,... ,x^)*{gi,g2,... ,g^) = {x\ * g\,X2* g^,-• • ^xg^g^), 

and the map - : Ms^Zio) —> G is defined by 

' an ai2 Ois * 

!-)• (a i + 1, a 2 + 1, ala + 1 , . . . ^33 + 1,) 021 ^22 «23 

Y asi 3̂2 a33 y 

where a]j is the same number in Zu as a^j in Zio. 

Alice wants to send 

M = (6,7,10,4,1,5,5,2,9) G G 
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to Bob. She takes 

B = 

( 

\ 

7 8 8 

6 8 9 

4 2 9 

and maps each element of B to an element o /Zu via the mappmg 

0 M - l , l H ^ 2 , . . . ,10^->1L 

Thus B becomes 

B„ = (8,9,9,7,9,10,5,3,10). 

Now, Alice multiplies M and Bg component-wise: 

(6, 7,10,4,1,5,5,2,9) * (8,9,9, 7,9,10, 5,3,10) 

= (6 * 8, 7 * 9,10 * 9,4 * 7,1 * 9, 5 * 10, 5 * 5, 2 * 3,9 * 10) mod 11 

= (4,8,2,6,9,6,3,6,2). 

Alice sends the encrypted message 

r = (4,8,2,6,9,6,3,6, 2) 

to Bob. 

Bob takes 
^ 1 8 8^ 

B 

V 
6 8 9 

4 2 9 

and maps it to 

(8,9,9,7,9,10,5,3,10). 

Bob then computes the inverses of each element in Bg modulo 11, and gets 

(8,9,9,7,9,10, 5,3,10)"^ = (7, 5, 5,8,5,10,9,4,10). 
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Finally, Bob multiplies this vector and the encrypted message M component-wise to 

get the original message: 

(4,8, 2,6,9,6,3,6,2) * (7, 5, 5,8,5,10,9,4,10) mod 11 

= (4 * 7,8 * 5, 2 * 5,6 * 8,9 * 5,6 * 10,3 * 9,6 * 4,2 * 10) 

= (6,7,10,4,1,5,5,2,9). 

As one can see, this is the original message M that Alice encrypted. 
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CHAPTER VI 

CONCLUSION AND FUTURE WORK 

As the future of technology becomes a reality, the process of keeping information 

secure is becoming increasingly more difficult. It is for this reason that we have 

presented this cryptosystem. We have presented a cryptosystem that is more difficult 

to break than one whose security is based on the difficulty of solving the discrete 

logarithm in GL{n, q). 

This is accomplished by improving on an existing method. The Diffie-Hellman 

key exchange is not new by any means, and over the years, numerous mathematicians 

have proposed many groups for the exchange to take place in. Some of these groups 

have demonstrated strengths of the Diffie-Hellman key exchange, and some have 

demonstrated weaknesses. The group GL{n, q) is an example of the latter. 

In this paper, we have improved upon the central idea of suggesting the group 

GL{n,q), i.e., matrix multiplication is a time-consuming process. This idea therefore 

makes it harder for an eavesdropper, Oscar, to find the secret key. We have shown 

that the group A7„(7?) satisfies the requirement that the calculations in G be difficult, 

because the group elements are matrices. More importantly, we have shown that 

an element of M„(7Î) cannot be reduced to Jordan Canonical form, thus making it 

extremely difficult for Oscar to find the key using the methods available to him. 

As technology evolves, so too does cryptography. There are several options for 

future work relating to this paper. One area might include defining a protocol where 

the only information about the group that is sent, is sent during the Diffie-Hellman 

key exchange, i.e., if M„(Zp_i) is the group used for the Diffie-Hellman key exchange, 

then the two users would know to switch to the group M„(Zp) without having to 

communicate this across the channel. This would make it even more difficult for an 

eavesdropper to decrypt the message. AIso, the research could be expanded to include 

more cryptosystems that incorporate the basic idea of our cryptosystem. 
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