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Human exploration of the solar system is an ambitious goal.  Future human missions to 
Mars or other planets will require the cooperation of many nations to be feasible.  
Exploration goals and concepts have been gathered by the International Space Exploration 
Coordination Group (ISECG) at a very high level, representing the overall goals and 
strategies of each participating space agency.  The Global Exploration Roadmap1 published 
by ISECG states that international partnerships are part of what drives the mission 
scenarios.  It states “Collaborations will be established at all levels (missions, capabilities, 
technologies), with various levels of interdependency among the partners.”  To make 
missions with interdependency successful, technologists and system experts need to share 
information early, before agencies have made concrete plans and binding agreements.  

This paper provides an overview of possible ways of integrating NASA, ESA, JAXA, and 
Roscosmos work into a conceptual roadmap of life support and environmental monitoring 
capabilities for future exploration missions.  Agencies may have immediate plans as well as 
long term goals or new ideas that are not part of official policy.  But relationships between 
plans and capabilities may influence the strategies for the best ways to achieve partner goals. 

Experience from ISS has shown that standards and an early understanding of 
requirements are an important part of international partnerships.  Attempting to integrate 
systems that were not designed together can create many problems.  Several areas have been 
identified that could be important to discuss and understand early: units of measure, cabin 
CO2 levels, and the definition and description of fluids like high purity oxygen, potable water 
and residual biocide, and crew urine and urine pretreat.  Each of the partners is exploring 
different kinds of technologies.  Different specific parameters may important to define or 
explore possible ranges depending on the system concepts. 

Early coordination between technology developers can create new possibilities for 
collaboration, and provide input to determine what combined options may provide the best 
overall system architecture. 
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I. Introduction 
ANY nations share the ambition of exploring our solar system and universe beyond low Earth orbit.  The 
Global Exploration Roadmap shows that we share “the driving goal of human exploration of Mars”, though 

we may have different strategies and near term priorities.  Robert Cabana, an NASA astronaut who participated in 
early missions to build the ISS and now serves in leadership positions at NASA, was quoted supporting international 
partnership as the model that would support future human exploration.  He said, “Right now we've got the United 
States, Japan, Canada, Russia, ESA and all its partners working together as one up there. When we leave planet 
Earth, we're not going to leave as any one nation, we're going to leave as the people from planet Earth."  Life 
support and related environmental monitoring systems are a critical part of those future human missions.  It is 
logical that all of the international partners are interested in life support and environmental monitoring systems.  An 
International System Maturation Team (ISMT) has been organized for life support and environmental monitoring 
topics including NASA, ESA, JAXA, and Roscosmos/Energia.  Through this collaboration, specialists and experts 
have a pathway to discuss technologies and issues that are important for the success of future missions. 

II. Parter Goals and Roadmaps 
Many different factors can influence interests, investments, and priorities as nations consider their investments in 

life support technologies, and their plans for the future.  National priorities for science and technology investments, 
industry capabilities, and strategic planning for future space exploration efforts would all be considered.  These 
priorities are created in many different ways.  But the result of these priorities for life support is specific plans for 
technology development and demonstration of important system capabilities. Capability gaps represent the 
differences between the system that each partner believes is important for future missions and the system that is 
available with current technology.  In an early ISMT meeting, NASA, ESA, and JAXA compared technology plans 
and came to agreement on a common set of capability gaps for future Exploration missions. Formal input was not 
available from Russian participants at the early meeting, but review of publications4 shows significant similarities in 
capabilities and investments as well.  In general, these technology gaps are focused on performance for crew health, 
achieving resource recycling goals to reduce future system mass more affordable over the long term, and greatly 
increasing reliability.  At this time, they do not represent a system design for any particular vehicle.  These improved 
capabilities would be helpful across many human exploration missions.  Each scenario will have to be optimized for 
architecture, mission, or vehicle performance and constraints. Specific concept of operations and redundancy or 
support ability strategies would be laid out after the performance of each component is better understood. 
 
Table 1: Technology Investments by Life Support and Environmental Monitoring Function 

 
Life Support & 
Environmental 

Monitoring Function 

Capability Gap NAXA, ESA, JAXA & Roscosmos 
Technology Investments 

Carbon Dioxide (CO2) 
Removal 

• Reliability; ppCO2 < 2 mmHg 
(2600 ppm) for 4 crew 

• NASA Carbon Dioxide Removal 
Assembly (CDRA) Upgrades & CO2 
removal technologies with new sorbents 
or methods3 

• ESA Advanced Closed Loop Life Support 
System (ACLS) CO2 Concentration 
System (CCA) with amine beds5 

• JAXA Amine CO2 Removal absorption 
beds6 

• Russian Vozdukh System 
Trace Contaminant 
Control 

• Replace obsolete sorbents with 
higher capacity; siloxane 
removal 

• NASA testing of commercial sorbents and 
catalysts 

• JAXA improved activated carbon and 
catalysts 

Particulate Filtration • Surface dust filtration • NASA regenerable filters and research for 
lunar and Mars dust 

Condensing Heat 
Exchangers (CHX) 

• Durable, chemically-inert 
hydrophilic surfaces with 

• NASA new concepts without hydrophilic 
coating, or coating improvement 

M 
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antimicrobial properties 
 

• ESA existing ISS CHXs 

Oxygen (O2) Recovery 
from CO2 

• Recover >75% O2 from CO2  
 

• NASA Spacecraft Oxygen Recovery 
Project for >75% Recovery from CO2 or 
Methane Decomposition 

• ESA ACLS CO2 Reprocessing Subsystem 
(CRA) Sabatier Reactor 

• JAXA Low Temperature Sabatier Catalyst 
• Russian Sabatier system and Methane 

processing system 
Oxygen Generation • Smaller, reduced complexity 

 
• NASA Oxygen Generation Assembly 

(OGA) Improvements 
• ESA ACLS Oxygen Generation 

Subsystem (OGA) 
• Russian “Elektron” 

Urine Processing • Reliability, 85% water from 
urine, dormancy survival 

 

• NASA ISS Urine Processor Assembly 
(UPA) Improvements and Cascade 
Distillation System (CDS) alternate 
method 

• JAXA Integrated Water Recovery 
Subsystem (JWRS) 

• Russian SRV-UM for urine distillation 
Water Processing • Reliability, reduced expendables, 

dormancy survival 
 

• NASA ISS Water Processor Assembly 
(WPA) Improvements  

• JAXA Integrated Water Recovery 
Subsystem (JWRS) 

• Russian SRV-KM for condensate and 
urine distillate, and SOV for purifying 
water for “Elektron”, and SRV-HG for 
hygiene water 

Brine Processing • Water recovery from urine brine 
>85% 

• NASA Urine Brine Processing (Primary 
technology is Ionomer Water Processor7) 

• JAXA Integrated Water Recovery 
Subsystem (JWRS) manages internally 
generated brines 

• JAXA Brine Processing Freeze Drying 
(for urine brines) 

Biocide • Common silver biocide with on 
orbit redosing 

• NASA Silver Biocide Development 
• JAXA Nano-bubble Ozone Development 

Urine Pretreatment • Supports water recovery from 
urine >85%, low toxicity 

• NASA ISS “Alternate” Phosphochromic 
Pretreat, Low Toxicity “Greentreat” 
Development 

• JAXA Low Toxicity, Moderate pH 
Pretreatment 

• Russian SPK-UM 
Quiet Fans and Acoustics • Quiet fans to limit need for 

volume-intensive acoustic 
treatment 

• NASA Interest in “Quiet Fan” 
Technology, Limited Development 
 

Metabolic Solid Waste 
Collection 

• Low-mass waste collection that 
works with/without urine 
processing 

• NASA Universal Waste Management 
System and low mass fecal collection 
device 

Atmosphere Monitoring • Major constituent, trace gas, 
targeted gases on-orbit monitors 
to eliminate need for ground 

• NASA Multi-Platform Air Monitor, 
NASA Spacecraft Atmosphere Monitor, 
NASA laser-based targeted gas monitor; 
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samples ESA ANITA-2 
Water Monitoring • Organic and inorganic on-orbit 

monitor capable of species 
identification and 
quantification.  Eliminate need 
for ground samples 

• NASA water monitoring suite early ISS 
demo 

Microbial Monitoring • Non-culture-based on-orbit 
identification and quantification 
of microbial species in air, 
water, surface samples. 

• NASA demonstrations of various PCR-
based technologies; ESA MIDASS 

Particulate Monitoring • On-orbit monitoring of particulate 
hazards 

• NASA particulate monitor development` 

 
All of the international communities have plans to demonstrate and test high priority life support systems on 

board the ISS.   

III. Levels of Integration 
International collaboration in future missions can be conducted at many different levels of integration.  No 

matter what hardware is provided, all systems are integrated through atmosphere and crewmembers.  Spacecraft 
atmosphere has to be actively mixed in microgravity, and movement between modules is unavoidable.  (Of course, 
in order to not have to repeat systems in every module, airflow is actively created between modules on ISS.)  
Multiple systems performing the same function, such as CO2 removal, create dynamics in the atmosphere that 
impact the performance of those same systems.  Recent V-HAB (Virtual-Habitat) simulations predict the cyclic 
effects that would occur across the ISS when the Vozdukh, CDRA, and ACLS are operated simultaneously9.  The 
input concentration of CO2 is often an important driver in the performance of CO2 removal systems10, and these 
variations may have dynamic effects downstream, even though the systems themselves are not considered physically 
integrated. 

The most separate systems would be partner nations each contributing modules that were fully outfitted.  In the 
simplest example, the Apollo-Soyuz mission represented two modules fully owned by individual nations.   But 
without coordination of requirements in advance, the 35 kPa (5psia) 100% O2 atmosphere used by Apollo vehicles 
and the nitrogen-oxygen mixture at 69 kPa (10 psia) used by Soyuz vehicles were incompatible11, adding substantial 
challenges to the operations and required new hardware and systems to successfully create an interface.  The ISS 
partnership has been much more successful, and has largely operated with contributed modules.  However, as ISS 
evolves, systems from one partner may be moved into modules provided by another partner.  A key example of this 
is the ESA ACLS demonstration that was originally planned for the ESA provided ISS Columbus module, but which 
now will be conducted in the ISS Destiny module5.  But even with better coordination, incompatible elements have 
been created.  One example is US potable water with iodine residual biocide and Russian potable water with silver 
residual biocide3, which cannot be mixed.  Another example is the use of two different fire extinguishers originally 
used on ISS12, because Russian water fire extinguishers were not compatible with US electronics and power 
systems. 

The next level of integration is between subsystems.  This occurs on ISS as well, when urine collected in a 
Russian commode is processed in the NASA Urine Processor Assembly (UPA), or condensate is transferred 
between US and Russian modules to balance water resources13.  Even if it was not intentionally designed to function 
this way, these operations effectively create system to system integration between the US Common Cabin Air 
Assembly (CCAA) and the Russian Elektron, and between the Russian toilet and the UPA.  Looking at the list of 
technologies in development in Table 1, it’s clear that many possible combinations of subsystems could be 
integrated into one life support system. Some subsystems are pre-integrated, such as the ESA ACLS performing 
CO2 collection, Sabatier reactions, and oxygen generation in one unit, or the JWRS design to process urine to 
potable water in an integrated process without an additional downstream system.  More examination will be required 
to see if the system can be operated with a substitution of a partner technology for one of the subfunctions in these 
units. Russian and NASA designs both appear to separate urine processing from downstream processing of the water 
recovered from the urine and condensate.  These systems might be very compatible as system to system integrations. 

The lowest level of integration would be component to component within a function.  Many of the partners have 
or are developing Sabatier reactors.  Adding a new Sabatier catalyst into a system design from another partner could 
be feasible.  This method of integration requires shared development responsibility, and is probably the most 
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difficult to execute.  If partners are able to be open about development processes, there may be opportunities where a 
proven component from another system could solve a problem.  One strategy may be to identify functions that are 
repeated in many systems.  Sharing reliable phase separators, efficient fans, robust pumps, and lightweight storage 
containers could help all partner systems, and improve sparing and commonality in an eventual flight mission. 

In any of these integration strategies, items like quick-disconnects, hoses and pumps to transfer fluids, or storage 
containers also become component to component integration between partners.  Designing them early for the 
broadest set of requirements will simplify operations in the future. 

IV. Requirements and Standards 
The functions required to sustain human life are likely to remain similar across many future missions.  

Technology development can (and should) begin before future programs officially exist.  However, this creates a 
challenge.  Detailed performance requirements can drive the selection of technologies for future investment.  The 
ISMT is beginning to develop informal standards and requirements relevant to life support and environmental 
monitoring systems.  These are intended to improve collaboration and allow for a modular system with contributions 
from different partners..  The initial work focused on identifying the most important topics for standards.  Later 
work may be able to look deeper into interface requirements between systems or components.  Different details 
matter depending on the technology, such as CO2 sorbents that may be more or less sensitive to the presence of 
water14.  Sharing these topics helps predict future integration issues that should be discussed.  The standards 
described below are expected to be an evolving list. 

 

A. Units of Measure 
Units of measure are a classic integration problem in engineering systems.  Official NASA policy15 requires use 

of the International System of Units (SI Units) unless exceptions are granted by the NASA Chief Engineer.  SI units 
are already used by most international partners.  Units may not matter as much as the technology development stage, 
where drawings and physical integration aren’t happening yet.  But it is an important part of improving collaboration 
between teams.  Spoken language is already a challenge in many international partnerships. Minimizing the need to 
convert units during a technical conversation 

B. Fluid Quick Disconnects 
Quick Disconnects (QDs) are the most basic interface between technologies and supporting equipment or storage 

volumes.  Multiple types of QDs are used on the ISS, from different international providers.  Standardizing 
connections would simplify integration of demonstration units on the ISS, as well as prepare for future missions.  
Future work in this area should include a comparison of requirements and specifications for each type used to see if 
there are underlying reasons driving their differences.  Existing spaceflight hardware and other designs from 
industry should be assessed.  New designs may need to be considered if none of the existing QDs meet all the 
necessary requirements. 

C. Atmosphere: Partial Pressure of CO2 
The ISS is actively trying to reduce CO2 levels below the original design points.  Medical research is continuing 

to drive to lower partial pressure levels for future missions.  Without formal requirements, technology development 
engineers have looked for a consensus on a level that can be used to design initial prototypes.  Based on a meeting 
between medical experts, crewmember representatives, and engineers, NASA technology developers will be 
designing systems for a cabin partial pressure setpoint of 2 mmHg (2600 ppm) as a nominal 24 hour setpoint. 
However, Russian experts have not come to the same conclusions.  The Russian aerospace community would likely 
use lower partial pressures on 3-year Mars missions than their current ISS standards, but not as low as the NASA 
medical recommendations.  More discussion on requirements will be necessary.  Eventually some issues may need 
to be negotiated if consensus for requirements cannot be reached. 

D. Atmosphere: Stored O2 Purity and Pressure 
Oxygen purity is important for safe crew atmosphere, but spacesuits and medical use drive new requirements.  

Any diluent gases in the oxygen cannot cause hazards for human health.  The NASA next generation spacesuit for 
exploration is expected to require oxygen at least 99.5% pure, and at pressures greater than 21000 kPa (3000 psia) to 
refill tanks in the Portable Life Support System (PLSS).  Diluents such as Argon do not pose a threat to human 
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health at low concentrations, but may be undesirable because they build up over time in the cabin or spacesuit 
atmosphere, or are difficult to separate. 

E. Atmosphere: Spacecraft Cabin Total Pressure and O2 Concentration 
The Exploration Atmospheres Working Group16 explored the risks and benefits of spacecraft atmosphere 

setpoints with reduced total pressure and increased oxygen concentration, with recommendations in 2006, and an 
update in 2010.  Follow on work recommended small changes to the lowest pressure atmosphere, settling on a 56.5 
kPa (8.2 psia) at 34% O2 instead of 55.1 kPa (8 psia) at 32% O2 atmosphere17.  Most long duration missions with 
closed-loop life support systems will still be conducted at Earth-normal type atmospheres of 101 kPa (14.7 psia) and 
21% O2.  But if life support developers want to operate short duration vehicles with lots of extravechicular activity 
(EVA), some of the components and technologies should be prepared for the lower pressure, higher oxygen 
atmosphere.  These conditions are also likely to impact habitat outfitting with softgoods and textiles because of 
flammability risk.  They will also determine which items need to have direct coldplate cooling, and which can be air 
cooled based on heat transfer reductions in the lower pressure atmosphere. 

F. Atmosphere: Trace Contaminant Levels and Generation Rates 
Understanding atmospheric trace contaminant gases is important for design of removal hardware, like adsorbents 

and catalysts, but also for sensors and other hardware.  The Spacecraft Maximum Allowable Concentrations 
(SMACs) for Airborne Contaminants18 are current requirements that are expected to apply to future missions as well 
for NASA.  But the SMAC may or may not be the right level to use when designing hardware.  When challenging a 
system for robustness or possible failures, exposure to contaminants at SMAC levels or higher would likely be 
appropriate.  When designing a system to remove trace contaminants, a much lower level should be assumed as the 
input concentration because the SMAC is not intended to be the nominal cabin level.  Additionally, Russian 
positions differentiate between levels that cause no risk and levels that cause acceptable risk.  They would prefer to 
operate at levels that cause no risk.  Cabin concentrations are not the only element that is necessary to understand 
technology sizing for trace contaminant control.  A generation rate model is also required to design life support 
system hardware.  The simplified model published by Perry in 200919 is the current leading explanation of design 
methods, assumptions, and load models for trace contaminant control systems in use by NASA. 

G. Water: Potable Water and Residual Biocide 
Standards for potable water quality can vary across nations and communities, and spacecraft requirements are 

often very different than terrestrial requirements.  Program requirements for water sometimes include requirements 
for humans and requirements designed to protect hardware.  The Human Integration Design Handbook20 gives an 
overview of concerns about potable water quality for humans.  Limits set by toxicological concerns are documented 
in Spacecraft Water Exposure Guidelines (SWEGs)21.  Some systems are known to have sensitivities to particular 
contaminants.  These may require a special standard, or at least engineers need to know the worst case water that 
could be fed to the system to design protections.  For example, both US and Russian systems that generated oxygen 
from water electrolysis must carefully control the water fed to the unit and include extra treatment steps.   

Residual biocides are chemicals added the water to control microbial growth.  For years, NASA has used iodine 
as a biocide, but had to remove it before crew consumption.  Russia has used silver on the ISS.  NASA intends to 
transition to a silver biocide for future spacecraft.  But even with a common biocide in the future, the concentration 
and limits need to be defined.  A minimum concentration is needed for microbial control, and at least one standard 
in use on ISS is for 0.1 mg/L as the minimum level22.  NASA SWEGs set the limit of silver in drinking water at a 
maximum of 0.4 mg/L for 1000 day long term exposure21. 

Additionally, some definitions of potable water may have included the addition of minerals for taste22.   

H. Wastewater: Urine and Urine Pretreatment Chemicals  
Human urine is highly variable based on individual human characteristics, diet, hydration levels, and other 

factors.  NASA has had on-orbit failures of the ISS UPA based on the actual in-flight concentration of calcium in the 
urine and the sulfuric acid used in the urine pretreatment23.  The concentration was higher than expected and tested 
by the engineering community, but not officially outside of a healthy range.  After considering several options, the 
engineering community has responded by developing a new formulation for the pretreatment chemical used in the 
ISS US commode24. (Though the design of the commode is the same as the ISS Russian commode, ownership and 
control are negotiated differently.)  Many other pretreatment formulations have been used in the past or proposed as 
alternates.  Requirements for the urine pretreatment chemicals, and ground testing methods are also important to 
discuss to compare options. 
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In related developments, NASA flight surgeons and water experts25 have been studying relationships between 
urine calcium and bone loss.  Crewmembers are being encouraged to increase water consumption.  These studies 
also detect variation in urine from crewmembers.  While nationality is not a biological description, the operations, 
instructions for drinking water, and primary diet may vary based on the nationality of the crewmember.  The ions 
that caused problems in NASA’s distillation based UPA may not be an issue for the JWRS since it is not distillation 
based.  But some other contaminant may prove to be a challenge.  Future conversations will include documentation 
of the current range of expectations for crewmember urine.  But development testing of new water systems should 
also work to identify the species or contaminants that could cause problems.  These problem species may not be 
measured regularly in crew urine, and data gathering would need to begin to create design requirements.   

I. Sensor Requirements  
A diverse set of monitoring and sensor technologies has been used on the ISS and is in development at various 

agencies.  Discussing sensors is complex because it is hard to easily categorize the requirements set.  Sensors may 
be divided by whether they take samples from air, water, or surfaces.  But some sensors can process multiple kinds 
of samples.  They may be characterized as measuring physical, chemical, or biological parameters.  Additionally, 
previous spacecraft requirements are not necessarily matched to the parameters actually measured by state of the art 
sensors.  This is especially true in biological sensors, where DNA based technology has dramatically changed the 
field.  The process of organizing requirements and matching them to sensor performance needs will be long and 
complex.  But it should involve international partner collaborations from the beginning.  This will ensure that 
technology development is coordinated to meet the high priority needs, and tested in a way that is useful to all the 
future stakeholders. 

J. Crew Metabolic Rate 
Human metabolism can vary depending on size, gender, activity level, and other individual differences.  The 

HIDH20 documents oxygen consumption, carbon dioxide production, and respiration and perspiration water that can 
be considered requirements for future life support systems.  However, the exercise profile included is based on 
assumptions for the Orion spacecraft.  Longer duration missions are likely to have longer exercise periods to 
maintain crew health.  The impacts of those exercise changes are not yet fully understood.  These requirements 
probably do not determine whether different life support technologies are feasible for future missions.  But they will 
determine the size and performance requirements.  Understanding whether systems are truly built to the same 
requirements will be important when comparing and selecting between technologies from partner nations.  

K. Biological Systems 
Many plant growth experiments have been and will be conducted on the ISS.  Investment and interest in 

biological systems may receive less of a focus at NASA than at other agencies, and these systems are not always 
considered part of the life support system.  However, even a small “pick and eat” plant growth system will have 
impacts on the life support system.  Ethylene is a classic example of a contaminant that can damage plant growth at 
levels that do not harm human health.  Also, plant transpiration of water from roots to release through the leaves will 
significantly increase the amount of condensate that has to be collected, and thus the amount of various kinds of 
wastewater to be processed.  And plants that are exposed to the bulk cabin atmosphere will remove CO2 and 
generate O2.  Even if only a small system is considered, the presence or absence of plant growth changes 
requirements on the life support system. 

V. Future Topics 
Technologies are relatively easy to discuss as individual topics.  But the architecture of the life support system is 

also a key area that needs to be discussed for good collaboration.  ISS has taught us that sharing standards is 
important.  But dissimilar redundancy, such as multiple CO2 removal systems, has proven to be very important to 
ISS success as well.  Strategies for build-up and integration of systems over time will be important to the 
implementation of ISS demos and to the design of early vehicles in cislunar space. 

VI. Conclusion 
Collaboration through the ISMT is just beginning, but has already had an impact on technology development 

processes.  Stories and explanations of failures and lessons learned on urine processors has led to conversations 
about how challenging early tests may prevent unexpected failures in the future.  Discussion of atmosphere 
requirements with international partners has helped elevate the need to clarify and share information even with 
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internal NASA stakeholders.  And discussions of sensor requirements for a mission where there is no sample return 
available is contributing to conversations on sample frequency and cost for existing operations.   
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