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ABSTRACT

Weather has a profound effect on human health and well-being, with extreme

heat being one of the greatest causes of human morbidity, specifically at large

gatherings such as sporting events. Various univariate, bivariate, and multivariate

heat stress metrics are used to identify episodes of oppressive weather that are

detrimental to human health. In an attempt to better understand weather

variations in the Greater Toronto Area (GTA), Environment Canada deployed a

mesonet system of 53 weather stations during the summer of 2015 during which the

Pan American Games were held and where thousands of tourists and athletes

visited Toronto. This research combines the mesonet data with pin-pointed EMS

ambulance response data, which allows for a unique and detailed exploration of the

effects of heat on human health than is traditionally possible with city-wide weather

and health estimates.

The goal of the current study is therefore to investigate the relationship

between various heat stress metrics and heat illness in Toronto, Canada during the

summer of 2015. Spatiotemporal analyses are completed through statistical

comparisons between five heat stress metrics: daily temperature: maximum (Tmax)

and minimum (Tmin), humidex, wet-bulb globe thermometer index, and the COMFA

human energy budget (EB) model. All metrics were also compared to heat-related

(HR) EMS calls for three human spatial exposure proxies (airport, averaged-city,

and station-specific). With these heat metrics and the health data, the following

tasks/objectives were pursued: create heat metric-based spatial maps of the GTA,

determine which heat metric and spatial exposure proxy has the strongest

relationship with HR EMS calls, and perform human EB case studies during the

Pan American Games’ sporting events at venues of escalated risk of exposure.
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Geospatial maps across the GTA demonstrate variations by heat metric,

identifying Hamilton, Ontario as an area of escalated risk for HR illness.

Additionally, statistical regression modeling of the human spatial exposure proxies

and the heat stress metrics demonstrated that the more localized proxy

(station-specific) and the COMFA heat metric had the strongest relationships with

HR EMS calls within the city limits. A case study focused on thermal comfort at the

Pan American Games’ soccer venue (located in Hamilton) found that athlete and

spectator EBs routinely reached the ‘dangerous’ level of experiencing heat stress,

which aligned primarily with absorbed radiation and metabolic activity values.

These results provide new information on the potential benefits and uses of

mesonet systems during large-scale events specific to extreme heat assessments.

Findings improve our understanding of the variability among common heat metrics

in relation to intra-urban heat-health burden to enhance Toronto’s resilience to

extreme heat. This information can be used to inform public health officials and/or

urban planners alike of areas of increased heat exposure at a finer intra-urban scale,

thereby creating awareness of the most crucial areas and times in which to

implement corrective bioclimatic design and/or plan EMS dispatches/resources to

on days of excessive heat.
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CHAPTER 1

INTRODUCTION

1.1 Pan and Para Pan American Games

The Pan American Games are an Olympic-style competition, held every four

years in the year preceding the Summer Olympic Games for athletes from countries

within the Americas. The Parapan American Games are a similar competition held

immediately after the Pan American Games for athletes with physical disabilities.

The two competitions combined will henceforth be referred to as the ‘Games’. The

major sporting event features a variety of summer sports competitions analogous to

those found in the Summer Olympics. The most recent Games event took place in

Toronto, Ontario, Canada in 2015 from July 10th − 26th and August 7th − 15th,

respectively. As with any summer sporting event, heat-related (HR) illnesses and

deaths are always a risk (Eichner, 2002). Thus, monitoring and relaying real-time

information regarding the physical environment during competitions is pivotal for

athlete and spectator health-security.

1.2 Heat and Human Health

Weather has a direct and profound effect on human health and comfort, with

heat being one of the greatest causes of mortality and morbidity (CDC, 2015).

When functioning normally, the human body uses several mechanisms to regulate

the generation and conservation of heat to maintain a core body temperature (Tc) of

approximately 37◦C (Bassil et al., 2009). However, participating in vigorous exercise

and/or exposure to hot environmental conditions can overwhelm these mechanisms

and cause a person to experience heat stress (Brotherhood, 2008). As extreme heat

is proposed to remain the deadliest of all extreme-weather-related hazards in the

1
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United States (Sheridan et al., 2009), there is a growing concern about the

likelihood that warmer climates and increased heat wave frequency, intensity and

duration brought about by anthropogenic climate change will enhance adverse

health burdens on cities (Meehl and Tebaldi, 2004; Harlan and Ruddell, 2011).

Compared to surrounding rural areas, air temperatures (Ta) in cities are

normally elevated due to the urban heat island (UHI) effect. The UHI effect can be

a powerful force in city-scale and microscale climates through the combined impacts

of high thermal mass (due to the absorptive properties of building and ground

materials), inhibited ventilation (due to tall buildings), and heat emitted from

vehicles and buildings (Luber and McGeehin, 2008). The UHI effect is most

prominent overnight, raising the nighttime minimum temperature (Tmin) up to 12◦C

on calm clear nights compared to rural areas (Oke, 1987). A heightened overnight

Tmin provides minimal relief from daytime heat stress, which has been correlated

with excess HR illnesses and deaths of urban inhabitants (McGeehin and Mirabelli,

2001; Zhang et al., 2012). Continued rapid urbanization of cities will only expand

the UHI effect and increase the number of people exposed to the health risks

induced by urban heating.

Although all HR deaths and illnesses are avoidable, many people succumb to

extreme heat every year. Having a city-wide public health response plan to heat is

key for lessening health impacts. Bassil et al. (2009) express that understanding the

geographical distribution of high-risk populations and regions within cities during

episodes of hot weather is essential knowledge for public health officials. For

example, if vulnerable locations and populations are spatially identified, those areas

can be specifically targeted for increased emergency medical service (EMS)

attention to reduce HR morbidity and mortality.

2
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1.2.1 Heat-Health Impacts in Mid-Latitude Cities

Heat-health studies focused on northern cities and countries have become more

common in recent years as modeling of future thermal environments has revealed

that populations in mid-latitude cities are likely to experience the greatest increases

in thermal stress (Jendritzky and Tinz, 2009) in response to climate change. This

increase will be most pronounced in the summer when the two weather types (dry

tropical and moist tropical) associated with HR mortality are present in the

mid-latitudes (Sheridan and Kalkstein, 2004). The most sensitive mid-latitude

regions are those where extremely high Ta occur infrequently (McGeehin and

Mirabelli, 2001), such as many cities in southern Canada, where residents are less

acclimatized to extremely warm environments.

When looking at the mortality risk of residents during heat waves in 43 United

States communities, Anderson and Bell (2011) found that northeast cities reported

the strongest association with relative risk of mortality. Similarly, in a comparative

climate analysis of HR EMS dispatches in Chicago and Phoenix completed by Hartz

et al. (2013), it was found that the number of HR EMS dispatches in both cities

climbed rapidly with increasingly high temperatures, however the threshold at

which this climb occurred was much lower in Chicago, with a steeper response.

Accordingly, mid-latitude cities are important to study as their residents are just as

susceptible to the health impacts of heat but may react differently due to the

absence of cooling shelters in public areas (Luber and McGeehin, 2008),

unawareness of modifications in activities or increased air conditioning use crucial

for coping with the heat (Kinney et al., 2008), and being less acclimated to high

temperatures (Kalkstein, 2000).

3
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1.2.2 Human Vulnerability to Heat Stress

At an intra-urban scale, many studies have focused on identifying the most

heat-vulnerable members of a city’s population (Harlan et al., 2006; Hondula et al.,

2012; Johnson et al., 2012). Many studies further find that HR mortality is highest

amidst young children, elderly, individuals with pre-existing illness, low-income and

less-educated groups, and minorities, with considerable differences across gender and

race (Smoyer-Tomic and Rainham, 2001; Hajat and Kosatky, 2010; Hansen et al.,

2011; Yardley et al., 2011; Reid et al., 2009, Uejio et al., 2011). During hot weather

exposure, many individual characteristics influence who will be affected, either for

physiological or behavioral reasons (Kinney et al., 2008). Although important, the

multiplicity of these characteristics often causes other vulnerable populations to be

overlooked. Athletes, attendees at a mass gathering, and tourists are three specific

subsets of a population that can be negatively affected during episodes of hot

weather as well because they are more likely to be outdoors or exerting themselves.

1.2.2.1 Athletes

Sports medicine and sports administration personnel are highly concerned with

sporting participants’ heat stress arising from vigorous exercise and the thermal

environment because of the perceived risk of heat casualties (Brotherhood, 2008).

Exertional heat stroke remains one of the leading causes of sudden death during

sport (Casa et al., 2015). During training and competition, an athlete’s metabolic

heat production provokes significant physiological strain on the human body. Heat

production during exercise is 15 − 18 times greater than at rest and can raise Tc by

1◦C every 5 minutes if no thermoregulatory modifications are made (Nadel et al.,

1977). When adverse environmental conditions are present, such as high Ta and

relative humidity (RH), they add to this metabolic heat load and prevent the
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adequate heat loss needed to avoid overheating (Brotherhood, 2008). A warmer

future will only add physiological strain to an individual’s thermoregulation during

physical activity. Maloney and Forbes (2011) found that for unacclimatized people

in Australia, future outdoor physical activity will not be possible on 33 − 45 days

per year, compared to 4 − 6 days per year at present.

In a prestigious sporting event such as the Summer Olympics or Summer Pan

American Games, where milliseconds and millimeters often determine an athletes

rank, the thermal environment and can be an important factor in affecting athlete

performance. Therefore, many sports organizations frequently use heat stress

metrics, such as the wet-bulb globe thermometer (WBGT) index, to monitor the

risk of HR illness and to set environmental thresholds for training and competition

(Casa et al., 2015; Larsen et al., 2007). Casa et al. (2015) recommend that public

health officials establish on-site emergency response plans for their venues and

athletes based on the environmental conditions of the site, the specific sport, and

individual considerations to maximize athlete safety and performance. Many other

indices have been developed for use in outdoor sporting events (see Epstein and

Moran et al., 2006), however the WBGT index is the most well-known and used

metric.

1.2.2.2 Mass Gathering Attendees

Mass gatherings are generally defined as a large number of people (ranging

from 1,000 to > 25,000) at a specific location, for a specific purpose, for a defined

time frame (Perron et al., 2005). Attendees of mass gatherings face unique health

risks because these events create challenging environments for EMS responses. High

crowd density often limits attendee access to air flow, shade, and water, and the

thermal insulation of surrounding bodies and metabolic heat generation adds to the
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heat load already induced by the thermal environment (Helbing and Johansson,

2013). Steffen et al. (2012) found that HR illnesses are one of the leading causes of

mortality at mass gatherings, with event type and weather commonly being the

variables that best predict medical usage rates (Milsten et al., 2002; Milsten et al.,

2004).

Patient information collected at three types of mass gatherings revealed that

medical cases occurred more frequently at sporting events (Milsten et al., 2004). At

large-scale sporting events, such as the 1996 Summer Olympic games in Atlanta

Georgia, Wetterhall et al. (1998) determined that spectators and volunteers

accounted for the vast majority of EMS visits for HR illness, while injury EMS

visits were more common among athletes. This result makes sense as large-scale

sporting events often attract spectators and volunteers from around the world who,

as non-residents, are often poorly acclimatized to the local environmental conditions

(Matzarakis and Frohlich, 2014). Contrarily, athletes often participate in heat

acclimation training well in advance of afar competitions to prepare for competing

in local weather conditions (Casa et al., 2015; Larsen et al., 2007).

1.2.2.3 Sports Tourists

Populations living in different climates have different susceptibilities

(Jendritzky and Tinz, 2009), meaning that travel to new locations for

sports-entertainment may result in health problems for non-natives (e.g. caused by

heat stress) (Matzarakis, 2006). In assessing the thermal satisfaction levels of local

residents and tourists at ten luxury hotels on the tropical island of Hainan, China,

Lu et al. (2016) found that tourists were significantly more sensitive to the wind

speed (Vw) and Ta considering the Vw compensation. Similarly, Lin and Matzarakis

(2011) found only the northern-most regions of Taiwan and Eastern China to be

6



Texas Tech University, Alexandria J. Herdt, August 2017

perceived as comfortable in the summer based on tourist thermal perceptions and

thermal comfort (TC), defined as ‘that condition of mind which expresses

satisfaction with the thermal environment’ (Fanger, 1972), classifications. As the

interface between climate and tourism is multifaceted and complex (Scott and

Lemieux, 2010), these results indicate that there will be thermal discomfort among

attendees, with a higher likelihood of unacclimatized individuals experiencing heat

stress if correct precautions are not taken. In fact, it has been the experience of

medical personnel over multiple seasons of working at a large sports facility that the

number of patients seen during a game correlates closely with game-time heat and

humidity (Perron et al., 2004).

1.2.3 Emergency Medical Service Response Data

The vast majority of heat and human health research has focused on analyzing

mortality data, thus causing a lack of information concerning the associations

between heat and non-fatal illnesses (Dolney and Sheridan, 2006; McGeehin and

Mirabelli, 2001). Dolney and Sheridan (2006) explain that this issue is largely

because adequate and high quality morbidity data are often difficult to obtain. In

recent years, however, worldwide epidemiological studies investigating heat and

morbidity relationships through the use of EMS ambulance dispatches have begun

to emerge (Graham et al., 2016; Cheng et al., 2016; Alessandrini et al., 2011, Ng et

al., 2014).

Results from these studies, especially those focusing on a finer spatial scale,

provide additional insight into neighborhood or individual vulnerability to extreme

heat by identifying locations and times when a population may be at a greater risk

of exposure to heat stress. Using EMS, land cover, and environmental information,

Graham et al. (2016) discovered that even a marginal increase in the tree canopy
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cover could reduce HR ambulance calls by approximately 80%. Further, Cheng et

al. (2016) and Alessandrini et al. (2011) found that the percent change in the

number of ambulance dispatches increased with every 1◦C raise in temperature in

Huainan, China and Emilia-Romagna, Italy, respectively.

There are several advantages to using EMS ambulance dispatch data to monitor

HR illness, including the electronic availability of data on a near-real time basis and

record of the location and time at which the patient actually became ill (Bassil et

al., 2009). Because of HIPPA protection and ethical research practices, other health

databases often record the patient’s residential address, which results in coarser

health information to use in weather-heath analysis; however, using EMS data, as in

the current study, provides the exact time and location of when a HR issue occurred.

Also, a commonality among the current literature is that the weather data used

to analyze the ‘heat’ portion of the heat-morbidity relationship in cities is obtained

from either a single weather station (usually located at the airport) (Hartz et al.,

2013) or the averaged values of scattered weather stations (Graham et al., 2016; Niu

et al., 2016). As EMS response calls for HR illness are vastly spread throughout the

city and intra-urban heating varies, using such weather data is likely misclassifying

the exposure of individuals to their surrounding environmental conditions at the

time the call was made. Therefore, the current study utilizes the unique

combination of fine-scale mesonet weather data and EMS ambulance dispatch data

to assess HR illnesses correlated with specific environmental conditions.

1.2.4 Urban Heat-Health Analysis at Varying Scales

The temporal and spatial variability in outdoor spaces is highly complex

(Kenny et al., 2009a) and is largely pronounced within the built environment. This

complexity arises at small scales from several physical features such as ambient
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weather, urban design, air pollution, and the thermal properties of building and

ground materials (Yaghoobian et al., 2010). The resulting thermal environment

therefore can have a compelling effect (both negative and positive) on the health of

its residents. Cities are mainly composed of artifical building materials that absorb

and retain heat from daytime solar radiation fluxes. Within urban areas, however,

locations exist that contain natural surfaces (vegetation, water, etc.) and shade that

are associated with significant reductions in summer temperatures and

improvements in TC (Vanos et al., 2016; Giannakis et al., 2016; Perini and

Magliocco, 2014; Vanos et al., 2012c). This occurs because the albedo and water

concentration of green spaces and hard artifical surfaces differ drastically due to

evapotranspiration phenomena and the efficiency of plants in regulating both

incident and reflected direct solar radiation (Salata et al., 2015). For this reason,

Gill et al. (2007) insist that numerous finer-scale heat (and cool) islands can be

identified within a larger city-wide UHI, dispersed in between the built environment

and green or blue infrastructure (Gehrels et al, 2016).

Yet urban heat-health research regularly operates at coarse scales and uses

scattered environment observations, while these urban features generally impact

human health at small scales (Kuras et al., 2015). This coarser scale has resulted in

a deficiency of spatially congruent evidence linking together urban form and human

TC at the human scale (Solis et al., 2016). Since variations in urban characteristics

can make one area of the city much warmer and less thermally comfortable than

another (or vice versa), determining the degree of correlation between the weather

in a single area of the city (exposure) and the number of HR illnesses (response) is

important for mitigating negative effects on human health during extreme heat

events.
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1.3 The Impact of the Physical Environment on Heat Related

Morbidity and Mortality

Empirically-based public health studies demonstrate that the monthly

distribution of EMS ambulance dispatches due to HR illnesses peaks in the summer,

with the majority of the elevated dispatch days having either maximum

temperatures (Tmax) considerably higher than normal or a Ta rise between

neighboring days (Golden et al., 2008; Cheng et al., 2016). If high Ta is sustained

during the overnight hours, Ta-associated mortality tends to increase (Kalkstein and

Davis, 1989), indicating that Tmin is an additional important parameter in the

relationship between weather and health, as hot nights reduce the ability of the

human body to recover from high daily Tmax, particularly for those without air

conditioning.

Although studies of HR morbidity and mortality have focused primarily on Ta,

human TC is also affected by microclimatic variations in solar and terrestrial

radiation, RH, and Vw (Brown et al., 2015; Erell et al., 2012). The mean radiant

temperature (Tmrt) — the combination of all short and longwave radiant fluxes

(Thorsson et al., 2007) — is a significant variable to consider in outdoor TC research

because the radiation absorbed by a human (Rabs) is often the largest contributor to

human heat gain and thermal discomfort in warm conditions (Johansson et al.,

2014; Kantor et al., 2014; Taleghani et al., 2015; Kenny et al., 2008).

Additionally, Zhang et al. (2014) found that absolute humidity was frequently

selected as one of the most important variables for all-cause mortality across

multiple United States cities and Vw has been shown to be significantly correlated

with human thermal satisfaction levels (Lu et al., 2016). Each study has

subsequently recommended that both humidity and Vw be included in future

heat-health studies, respectively. Studies have also expressed the need for further
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research into determining the importance of specific weather parameters on the

relationship between weather and health (McGeehin and Mirabelli, 2001). Doing so

will improve our understanding of the heat-health relationship and aid in

preventative procedures as key parameters’ health-harmful thresholds are identified.

1.3.1 Heat Stress Metrics

Various countries now use univariate, bivariate, and multivariate heat stress

metrics to help identify episodes of hot weather that are detrimental to human

health (Smoyer-Tomic et al., 2001), which have been developed for a range of

applications, from heat warnings to exertional heat illness guidelines. Each heat

stress metric outputs a single value that represents scale-based neutral-to-dangerous

conditions and can be split into one of three metric categories: empirical, direct,

and rational (McGregor and Vanos, in review).

1.3.1.1 Direct Heat Stress Metrics

Direct heat stress metrics use only measurements of weather conditions to infer

the thermal environment experienced by an individual (McGregor and Vanos, in

review). The most common direct metrics used in heat-health literature are the

heat index (HI), apparent temperature (AT), humidex, and WBGT index. Perron

et al. (2004) indicate a strong positive correlation between the HI and the number

of patients cared for during a sporting event, where linear models predict that for

every 10-degree increase in the HI, three more patients per 10,000 people will require

medical attention. Similarly, statistical analysis completed by Hartz et al. (2013)

showed that of the five heat stress metrics assessed in Phoenix and Chicago, daily

maximum AT had the strongest relationship with HR illness. Since the number of

high heat stress days and nights (magnitude dependent on heat stress metric) during

11



Texas Tech University, Alexandria J. Herdt, August 2017

summer is projected to increase in Toronto by the mid-21st century (Smoyer-Tomic

and Rainham, 2001; Oleson et al., 2013), increased patient volume and deaths

should be expected as well. The most serious limitation in using direct heat stress

metrics is that they do not take into account physiological parameters, such as an

individual’s activity level, clothing, etc., which can introduce large under-estimation

errors into any predictions of human health outcomes (Budd, 2008).

1.3.1.2 Rational Heat Stress Metrics

Rational heat stress metrics are complex mathematical models that combine

aspects of both empirical and direct metrics to account for both the environmental

and physiological variables that impact an individual’s health (McGregor and

Vanos, in review). The most common rational metrics used in heat-health literature

are human energy budget (EB) models, such as the universal thermal comfort index

(UTCI) (Jendritzky et al., 2012), the physiologically equivalent temperature (PET)

(Hoppe, 1999), and the comfort formula (COMFA) outdoor EB model (Brown and

Gillespie, 1986). The COMFA EB model has been used extensively in North

America to assess the human TC during sedentary and physical activity at different

conditioning levels (Kenny et al., 2009a,b; Vanos et al., 2012a,b,c). A significant

positive correlation was found by Kenny et al. (2009a) between participant actual

thermal sensation votes and predicted EBs. Vanos et al. (2012c) likewise observed

that HR emergency response calls were significantly dependent on the COMFA EB

estimations of human TC within-city station data, thus suggesting that outdoor EB

modeling has potential to be used as a guide for human heat stress prediction in

addition to urban design (Brown et al., 2015).

Many heat-health studies have examined the ability of direct and rational

metrics to predict health outcomes; however, there is no single existing heat metric
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that is agreed upon to best predict human health response to heat stress because

relationships vary by location, time of year, and population (Hajat et al., 2010).

Correspondingly, the current study will investigate the ability of a combination of

direct and rational heat stress metrics to predict HR EMS ambulance dispatches

during the summertime in Toronto.

1.4 Study Goals and Objectives

Much of the prior literature examine heat-health relationships at scales that are

large (such as city-wide). Relatively less attention has been paid to highlighting

direct and indirect heat-health processes at finer scales, using ambient temperature,

although many studies have used remotely-sensed surface temperatures to infer hot

spots (Jenerette et al., 2016). Depending on their scale, some studies may therefore

over- or under-estimate the potential heat-health response at specific environmental

conditions (Tamerius et al., 2007). Currently, no study exists that evaluates the

relationship between heat and human morbidity by utilizing the unique combination

of fine-scale within-city meteorological mesonet stations and EMS ambulance

response call data during a large-scale event. This is of great concern due to the

vast differences in land characteristics across urban landscapes that control the

thermal environment and the consequent potential heat stress experienced by a

higher population of people in the given urban environment.

Accordingly, the goal of this study is to investigate the relationship between

various heat stress metrics with heat illness in Toronto, Canada during the summer

of 2015 during which the Pan and Parapan American Games took place. To do so,

the following objectives will be accomplished:

1. Utilizing 53 mesonet stations, create spatial maps of the Greater Toronto Area

(GTA) based on multiple heat metrics to demonstrate a) variations by metric
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and b) where heat exposures are escalated.

2. Determine which heat metric has the strongest relationship with heat-related

emergency response calls within the city limits of Toronto using statistical

regression modeling and three spatial exposure proxies.

3. Perform athlete/spectator human energy budget case studies during Games

sporting events at venues of escalated risk of exposure.

14



Texas Tech University, Alexandria J. Herdt, August 2017

CHAPTER 2

METHODS

2.1 Study Site

Toronto, Canada [43.7182◦N, 79.3774◦W], the capital of the province of

Ontario, is a dynamic metropolis along Lake Ontario’s northwestern shore (see

Figure 2.1). It is the largest city in Canada, hosting over six million residents within

the greater area. The city experiences a semi-continental climate, with a generally

warm, humid summer and a cold, dry winter, modified by its location on the shores

of Lake Ontario (Peel et al., 2007). The three hottest months are June, July, and

August, with average daily high temperatures of 23.8◦C, 26.6◦C, and 25.5◦C

respectively (Table 2.1). Located in the warmest climatic zone in Canada, Toronto

has experienced above average Tmax in five of the seven summers between 2010 and

2016 (Environment Canada, 2016), is subjected to UHI effects (Rinner and Hussain,

2011; Wang et al., 2016), and is predicted to have doubled HR mortality by 2050

and tripled HR mortality by 2080 (Penney, 2008). A maturing public-health risk to

heat is predicted by Lemmen et al. (2008), proclaiming that Toronto will most

likely experience more intense and frequent extreme heat events in the future. For

this reason, heat-health alert systems have become the norm in cities of dense

occupation. This tactic was used in Toronto for the 2015 summer season, in attempt

to minimize human HR morbidity when an influx of athletes and public spectators

occurred as a result of the Games.

2.2 Data Collection

This study incorporated two main datasets: a mesonet monitoring network

meteorological dataset and an EMS ambulance response call dataset.
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Table 2.1: Montly average climate data for Toronto, Canada (from 1981-2010).1

Month High Temperature Low Temperature

January −0.7◦C −6.7◦C
February 0.4◦C −5.6◦C

March 4.7◦C −1.9◦C
April 11.5◦C 4.1◦C
May 18.4◦C 9.9◦C
June 23.8◦C 14.9◦C
July 26.6◦C 18.0◦C

August 25.5◦C 17.4◦C
September 21.0◦C 13.4◦C
October 14◦C 7.4◦C

November 7.5◦C 2.3◦C
December 2.1◦C −3.1◦C

1 Information retrieved from Environment Canada (2017).

2.2.1 Environment Canada Mesonet Monitoring Network

In preparation for the Games, the Meteorological Service of Canada (MSC), a

unit within Environment Canada, collaborated with Health Canada and Toronto

Public Health to design a health and weather package that would encompass

monitoring and prediction products on the themes of air quality, heat, and radiation

in Toronto during the summer of 2015. This package promoted the installation of a

mesonet monitoring network, consisting of 53 weather stations that were dispersed

throughout the Games area, as displayed in the GIS map of Toronto in Figure 2.1.

Of those 53 stations, 10 are permanent stations and 43 are compact stations that

were temporarily installed. Figure 2.2 shows the general design of the compact

weather stations. Each station was equipped with a black globe temperature sensor

(Campbell Scientific, Inc.) to record globe temperature (◦C), and either a Vaisala

WXT520, Lufft WS601, or Lufft WS600 weather transmitter to record Vw (m/s)

and wind direction, Ta (◦C), dewpoint temperature (◦C), wet-bulb temperature

(◦C), and RH (%). Instrument height for all stations was 2.5m above their
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respective surface.

A list of each station’s name, local climate zone (LCZ), latitude, and longitude

can be found in Appendix A. All station LCZs were classified based on categories

from Stewart and Oke (2012; Table 2). Considering the surrounding environment

(up to 250m), the LCZ of a station was determined post-site selection process, using

notes and photos taken by the MSC while on-site and Google Earth. Any LCZ or

height differences among the stations were accounted for upon installation. The

compact stations were primarily installed in 2014 and decommissioned in Fall 2015,

and were operational from May 2015 through September 2015. However, this study

focuses only on the data collected during July and August; the months during which

the Games took place. During the Games, a mobile application relaying real-time

weather information (provided by Environment Canada) from each station was

available for public use to warn users of potential adverse weather conditions at

their location on event days.

Data were collected at 1-min intervals using either a CR-1000 or CR-3000

Campbell Scientific datalogger. Any missing data was recorded as missing and was

not included in the analysis. 48 of the stations had ≤ 1.1% of data missing, 3

stations had < 8% of data missing, and 2 stations had < 18% of data missing

(6156131 and 6136305). Neither of the 2 stations with > 8% of their data missing

were used in the finer-scale heat metric and EMS ambulance response call analysis,

yet were included in the heat metric maps. The meteorological variables used within

this study are calculated as averages over the past 1 hr. The maximum and

minimum value over the past 1 hr was additionally extracted for Ta. These data are

representative of the meteorological environment around each station in which

outdoor human activity took place. As previously mentioned, such fine-scale

surveillance has the potential to initiate an early and targeted public health
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response and mitigate the harmful health effects of extreme temperature.

Figure 2.1. Mesonet monitoring network stations (black circles) dispersed across the
Games area. The stations are generally located near the Games venues.

2.2.2 Heat Stress Metrics

From the meteorological variables collected by the mesonet monitoring

network, three heat metrics were calculated: the humidex, the WBGT index, and

the COMFA human EB.
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Figure 2.2. General structure of one of the 43 temporarily installed compact mesonet
stations used to monitor environmental conditions during the Games. Source: Envi-
ronment Canada.

2.2.2.1 Humidex

Canadian meteorologists use the humidex to interpret a perceived temperature,

or one that the average human body would feel, given the combination of the Ta

and RH of the air. The humidex is an empirically-derived method of quantifying

human discomfort due to excessive heat and humidity. The current equation for

computing the humidex, in ◦C, developed in 1979 by Masterton and Richardson of

Canada’s Environment Service, is as follows:

Humidex = Ta + 0.5555
[
6.11e

5417.7530

(
1

273.16
− 1

Tdew

)
− 10

]
(2.1)
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where Ta is the air temperature in ◦C and Tdew is the dewpoint temperature in K.

Environment Canada uses a humidex assessment scale to alert the public of

thermally uncomfortable conditions based on the degree of comfort associated with

the scale ranges; 20 − 29◦C ‘Little Discomfort’, 30 − 39◦C ‘Some Discomfort’, 40 −

45◦C ‘Great Discomfort; Avoid Exertion’, above 45◦C ‘Dangerous; Heat Stroke

Possible’ (Blazejczyk et al., 2012, Table 2).

2.2.2.2 Wet-Bulb Globe Temperature (WBGT) Index

The WBGT index, originally created in the early 1950s to limit serious heat

illness outbreaks in the United States Armed Services training camps, is commonly

used in heat stress research (Budd, 2008). In addition to Ta and humidity, the

WBGT index incorporates the effects of solar radiation and Vw: two vital

ingredients for assessing human heat stress in adverse outdoor microclimates. The

index is a weighted average of the natural wet-bulb temperature (Tw) in ◦C,

dry-bulb air temperature (Ta) in ◦C, and globe temperature (Tg) in ◦C, calculated

as:

WBGT = 0.7Tw + 0.2Tg + 0.1Ta. (2.2)

Today the WBGT index remains a convenient and comprehensive index of heat

stress used to monitor environmental conditions during manual labor and exercise in

direct sunlight. Based on the magnitude of the index output and the type of

physical activity being performed in the heat (e.g. military training, athletics

programs, work), specific guidelines have been established for activity modifications

to avoid experiencing heat stress (e.g. rest breaks, water consumption, limited

uniform attire) (Armstrong, 2007). Table 2.2 provides an example of WBGT index

threshold guidelines for athletic workouts and/or competition.
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Table 2.2. WBGT levels for modification or cancellation of workouts or athletic
competition for healthy adults (adapted from Armstrong et al., 2007).d

WBGT ◦C Nonacclimatized, Unfit, Acclimatized, Fit,
High-Risk Individualsa Low-Risk Individualsa,b

≤ 10 Normal activity Normal activity
10.1 - 18.3 Normal activity Normal activity
18.4 - 22.2 Increase the rest:work ratio. Normal activity

Monitor fluid intake.
22.3 - 25.6 Increase the rest:work ratio and Normal activity. Monitor fluid intake.

decrease total duration of activity.
25.7 - 27.8 Increase the rest:work ratio; decrease Normal activity. Monitor fluid intake.

intensity and total duration of activity.
27.9 - 30.0 Increase the rest:work ratio; decrease Plan intense or prolonged exercise

intensity and total duration of activity. with discretiond; watch at-risk
Limit intense exercise. Watch at-risk individuals carefully.

individuals carefully.
30.1 - 32.2 Cancel or stop practice and competition. Limit intense exercised and total daily

exposure to heat and humidity; watch for
early signs and symptoms.

< 32.3 Cancel exercise. Cancel exercise uncompensable heat
stressc exists for all athletesd.

a while wearing shorts, T-shirt, socks and sneakers.
b acclimatized to training in the heat (for at least 3 weeks).

c internal heat production exceeds heat loss and core body temperature rises
continuously, without a plateau.

d Differences of local climate and individual heat acclimatization status may allow
activity at higher levels than outlined in the table, but athletes and coaches should

consult with sports medicine staff and should be cautious when exceeding these
limits.

The main limitation of the WBGT index is that it does not adequately account for

the added heat stress humans experience when the evaporation of sweat is restricted

by high humidity, low air movement, or clothing (Budd, 2008). However, adapted

(lower) thresholds have been created in order to account for additional clothing or

early season heat exposure (Armstrong, 2007). The Canadian Centre for

Occupational Health and Safety (CCOHS), in particular, has comprised a list of

adjusted threshold limit values for the WBGT index based on the type of work

clothing being worn (Government of Canada, 2017).
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2.2.2.3 Comfort Formula (COMFA) Human Energy Budget

The COMFA outdoor EB model is a metric designed to assess the heat stress of

humans performing physical activity. Many studies have both tested and

incorporated revisions into the model to ensure maximum agreement between tested

subjects environment-based TC and the budget output (Brown and Gillespie 1986;

Kenny et al. 2009a,b; Vanos et al. 2012a,b,c). It requires meteorological inputs (Ta,

Rabs, RH, and Vw) and physiological inputs (metabolic activity, Mact, and activity

velocity, Va) to produce a human EB in Wm−2, calculated as:

EB = M +Rabs − E − C − Lemit (2.3)

where M is the metabolic heat generated by a human, Rabs is the radiation absorbed

by a human, E and C are the total evaporative and convective heat losses from a

human, respectively, and Lemit is longwave radiation emitted from a human. All

fluxes are in Wm−2. The subjective interpretation of the model output values for

sedentary individuals is displayed in Table 2.3 (Brown and Gillespie, 1986; Kenny et

al., 2009a). Full COMFA EB model explanations and equations can be found in

Brown and Gillepsie (1986) and Kenny et al. (2008; 2009a,b). The EB and the

associated flux components (EB streams) are calculated using the most recent

version of the COMFA EB model (Vanos et al., 2012c; Kenny et al., 2009b).

In the analysis for objectives 1 and 2, a constant Mact of 87.15 Wm−2 was used

to represent a Mact of a standing, slowly walking human performing little activity,

replicating that of a tourist/event spectator. As humans often base their clothing

choices on the weather, intrinsic clothing insulation estimations were based on
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Table 2.3. Subjective interpretation of the COMFA EB model output values for a
sedentary individual (sitting or standing) (Brown and Gillespie, 1986).

Subjective Interpretation Model Output (Wm−2)

‘Cold’(−3) ≤−201
‘Cool’(−2) −200 to −121

‘Slightly Cool’(−1) −120 to −51
‘Neutral’(0) −50 to +50

‘Slightly Warm’(+1) +51 to +120
‘Warm’(+2) +121 to +200
‘Hot’(+3) ≥+201

ambient Ta, as follows:

Icl = 1.372 − 0.01866Ta − 0.0004849T 2
a − 0.000009333 − T 3

a (2.4)

where Ta is air temperature in ◦C, and Icl is clothing insulation in units of clo,

which is an arbitrary unit (1 clo = 186.6 sm−1 = 0.1555 m2 ◦C−1 W−1) (UTCI,

2010; Havenith et al., 2012; Psikuta et al., 2012). Because the clothing of

tourists/spectators was unknown, this can accurately estimate the attire of a human

whom TC is being calculated for.

Similarly, for the given study, the Rabs is determined by calculating the Tmrt

using the globe thermometer, and converting the temperature into an Rabs energy

flux in Wm−2. Using the globe temperature, we first calculate the Tmrt (Equation

2.5) (Johansson et al., 2014) for input into Equation 2.6 to determine Rabs.

Tmrt =

[
(Tg + 273.15)4 +

(1.335 × 108)V 0.71
w

E(D0.4)
(Tg − Ta)

]1/4

− 273.15 (2.5)

where Ta is air temperature in ◦C, Tg is globe temperature in ◦C, Vw is wind speed
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in ms−1, E is the globe emissivity (0.95), D is the globe diameter (0.150m).

Rabs = σ(Tmrt + 273.15)4 (2.6)

where σ is the stefan-boltzmann constant (5.67×10−8 Wm−2K−4) (Johansson et al.,

2014). However, Tg values are based on a black spherical human with an albedo

near 0, yet humans are mainly cylindrical-shaped with an average albedo of about

0.37 (Brown and Gillespie, 1986; Montieth and Unsworth, 1990); therefore, the Rabs

values calculated from the black globe in Equation 2.6 would over-predict the actual

absorbed radiation experienced by a human, mainly due to the black matte color.

Hence, a correction factor was applied to each Rabs value to account for color

differences and geometric differences between a cylinder and globe at every solar

angle, as in Grundstein et al. (2017).

2.2.3 EMS Response Calls

The main EMS dataset for the study dates was obtained from the Toronto

Emergency Medical Services (TEMS) medical dispatch database under a data

sharing and confidentiality agreement. The study also received ethics approval from

Texas Tech University. The dataset included all 911 emergency medical dispatch

calls, both HR and non-heat-related (NHR), to which TEMS responded within the

Toronto city limits (see Figure 2.3). The following variables were extracted for each

call: response date, patient gender, patient age, Medical Priority Dispatch System

(MPDS) determinant code, and latitude and longitude coordinates of the pick-up

location. The MPDS determinant code reports the issue and the severity of the call

(Graham et al., 2016). A full explanation on how MPDS information is assigned to

a call is provided in Bassil et al. (2009).

Bassil et al. (2008) found that the MPDS determinant code ‘Heat/Cold
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Exposure’ corresponds well with Ta in Toronto, yet the use of this determinant code

by TEMS is limited and consequently potentially misleading in regard to the full

impact of heat on morbidity. The current study therefore used a broader subset of

MPDS codes specified by Luber and McGeehin (2008) and utilized in more recent

EMS heat-health studies in Toronto (Vanos et al., 2012a; Graham et al., 2016) and

defined HR EMS calls as those that included the following conditions: Breathing

Problems; Cardiac or Respiratory Arrest/Death; Chest Pain; Headache; Heart

Problems; Heat/Cold Exposure; Sick Person; Stroke/Cerebrovascular Accident; and

Unconscious/Fainting. Only ‘Heat Exposure’ calls were used from the ‘Heat/Cold

Exposure’ MPDS determinant code category.

2.2.3.1 Spatial Distribution of EMS Response Calls

Daily total HR and NHR EMS calls were calculated for each 24-hr period of

interest both city-wide and by station subdivision using nearest-neighbor analysis.

Nearest-neighbor analysis is useful in analyzing the spatial relationship between

features by finding the point (in this case, an EMS call) in a given set that is

nearest to a given point (in this case, a weather station). Only the 14 stations that

were either inside or outlining the Toronto city limits (see Figure 2.3) were used for

this analysis. Table 2.4 shows the total number of HR and NHR EMS calls for the

entire city and for each station for July and August 2015.

2.2.3.2 Spatial Variations

Due to the influx of over 7,000 athletes and an unknown number of volunteers

and spectators in Toronto during the Games months attending numerous venues at

varying times, it was not possible to use the standard census of population within

the city to account for spatial and temporal differences in HR EMS calls. Instead,

25



Texas Tech University, Alexandria J. Herdt, August 2017

Figure 2.3. The 14 mesonet monitoring network stations (black circles) dispersed
within or near the City of Toronto limits (outlined in purple). The weather station
closest to the airport, used for the ‘airport proxy’, is displayed in red to the left of
the city limits.

NHR EMS calls were used as a proxy for population counts. The ratio of the

average HR and NHR EMS calls made during the Games period versus the

non-Games period was assessed for both the individual stations and the stations

combined. Minimal differences were found in the ratios; 0.71 for the Games period

and 0.75 for the non-Games period for the full city. Therefore it was determined

that no adjustment to HR EMS calls needed to be made during the Games period

to account for population increases.
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Table 2.4. Total number of heat-related and non-heat-related EMS ambulance re-
sponse calls by station for July and August 2015.

STATION NUMBER HR NHR

City 11773 15878
6156164 367 543
6156170 542 639
6156161 504 613
6156168 921 1224
6156177 503 561
6156157 1712 2227
6156175 3021 4000
6156171 236 393
6156165 368 466
6156136 1364 1871
6156172 881 1198
6156180 114 201
6156179 851 1215
6156183 389 727

2.3 Greater Toronto Area Heat Metric Maps

For each of the 53 mesonet weather stations, the daily maximum value of each

of the calculated heat metrics, including Tmax, was extracted for every day of July

and August 2015. The daily maximum values for each heat metric were then

averaged over the 62-day analysis period to create a seasonal summer average for

each station. Graduated symbol classes in ArcGIS were used to plot the

station-specific seasonal summer averages for each metric, respectively, to show

variations by metric and where human exposure to HR illness is escalated.

2.4 Calculations of Relationships between Heat Metrics and EMS

Response Calls

As EMS data were only available for the City of Toronto limits (see Figure 2.3),

the 14 stations within the city were used to complete statistical regression modeling
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to relate HR EMS ambulance response call data to the calculated heat metrics,

including Tmax and Tmin. Three spatial exposure proxies were used for this analysis:

1) daily data used from only a single-station to represent the meteorological

environment of the city per day, similar to how previous heat-health studies use

airport weather station data (Hartz et al., 2013; Hondula et al., 2012) (herein

denoted as the airport proxy), 2) daily data averaged across the 14 stations to

represent the meteorological environment of the city per day (Graham et al., 2016)

(averaged-city proxy), and 3) station-specific local data combined across the 14

within-city stations rather than by day (station-specific proxy). This is the first

study that we know of to employ the station-specific exposure proxy.

For each spatial exposure proxy, an ordinary least squares (OLS) regression was

applied and the 95% confidence intervals (CIs), variance (R2 value), significance of

the correlation (p-value), and the slope of the regression were calculated for

comparison. The slope of the linear regression line represents the relative change in

number of HR EMS calls per 1◦C or 1 Wm−2. A p-value of 0.05 was chosen to

indicate that a heat stress metric is significantly correlated with the HR EMS calls.

All dependent data were tested for linearity, collinearity, and normality, and were

found to have a linear relationship with the independent variable of HR EMS calls.

Normality testing was completed using the Shapiro-Wilks test of normality.

As HR EMS calls made during the early hours of the morning are generally

resultant of the previous day’s environmental conditions, a brief time frame shift

analysis was constructed to determine the extent to which proceeding morning calls

were related to the previous day’s weather. We tested no time shift and the 5:00am

− 8:00am hour time shifts in hourly intervals. Results from this time frame shift

analysis are shown in Table 2.5. A shift to 5:00am showed the strongest relationship

and therefore, for all analysis in objective 2, all EMS calls made between 12:00am

28



Texas Tech University, Alexandria J. Herdt, August 2017

and 5:00am local standard time (LST) were added to the preceding day’s total HR

EMS call count. For example, any HR EMS calls made between the hours of

12:00am and 5:00am on July 2nd were added to the total number of HR EMS calls

recorded between 5:00am and midnight on July 1st. The coinciding NHR EMS calls

were also assigned to the preceding day’s total NHR EMS call count to keep the

respective number of HR EMS calls per population counts consistent.

2.4.1 Airport Proxy

The daily value of each heat stress metric recorded by the mesonet weather

station closest to the Toronto Pearson International Airport (Hershey Centre, shown

on Figure 2.3) was plotted against the daily city-wide total number of HR EMS

calls per 100,000 people. The total number of HR EMS calls made at a given heat

metric value was determined by taking the ratio of total HR-to-NHR calls and

scaling it to a population of 100,000 people. To scale the HR-to-NHR EMS call

ratio to a population estimate, the total number of NHR EMS calls over the entire

study period (15,878 calls) was divided by the number of days in the study period

(62 days) and divided by the population of Toronto City (2.7 million) and

multiplied by 100,000 to get the total HR-calls-per-100,000 people, as follows:

Total HR EMS Calls per 100,000 =
HR Calls

NHR Calls
× Total NHR Calls

62 Days
× 100,000

City Population
.

(2.7)

This ratio of per 100,000 people is commonly used in health literature to describe

the relationships between a health issue and a population (Scutchfield and Keck,

2003). This method for determining the total number of HR EMS calls was applied

to both the averaged-city and station-specific proxies as well. Applying this

approach is important in order to compare the statistical results within and between
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Table 2.5. Time frame EMS ambulance response call statistical analysis results for
time shift correction.

0:00 LST Airport Averaged-City Station-Specific

Slope R2 Slope R2 Slope R2

Tmax 0.010 0.002 0.026 0.012 0.042 0.048
Tmin 0.046 0.029 0.043 0.025 0.067 0.080

Humidex 0.012 0.007 0.020 0.015 0.024 0.024
WBGT 0.004 0.0003 0.039 0.018 0.034 0.018
COMFA 0.0008 0.0078 0.0030 0.0685 0.0028 0.0693

5:00 LST Airport Averaged-City Station-Specific

Slope R2 Slope R2 Slope R2

Tmax 0.020 0.008 0.029 0.016 0.042 0.044
Tmin 0.047 0.031 0.056 0.039 0.066 0.081

Humidex 0.002 0.000 0.024 0.021 0.023 0.031
WBGT 0.001 0.000 0.025 0.009 0.036 0.019
COMFA 0.0020 0.0482 0.0034 0.0753 0.0033 0.1119

6:00 LST Airport Averaged-City Station-Specific

Slope R2 Slope R2 Slope R2

Tmax 0.025 0.012 0.033 0.020 0.046 0.053
Tmin 0.042 0.024 0.051 0.031 0.063 0.067

Humidex 0.014 0.008 0.022 0.018 0.026 0.037
WBGT -0.002 0.000 0.028 0.011 0.032 0.013
COMFA 0.0025 0.0668 0.0039 0.1084 0.0033 0.1065

7:00 LST Airport Averaged-City Station-Specific

Slope R2 Slope R2 Slope R2

Tmax 0.023 0.011 0.036 0.023 0.043 0.042
Tmin 0.037 0.018 0.040 0.019 0.058 0.051

Humidex 0.016 0.011 0.024 0.020 0.024 0.033
WBGT 0.007 0.001 0.030 0.018 0.031 0.012
COMFA 0.0023 0.0573 0.0037 0.0961 0.0032 0.1099

8:00 LST Airport Averaged-City Station-Specific

Slope R2 Slope R2 Slope R2

Tmax 0.021 0.009 0.031 0.016 0.040 0.038
Tmin 0.026 0.009 0.027 0.010 0.046 0.033

Humidex 0.009 0.003 0.021 0.015 0.016 0.019
WBGT 0.005 0.000 0.030 0.010 0.027 0.009
COMFA 0.0024 0.0619 0.0041 0.1082 0.0032 0.0975
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each of the proxies with respect to their ability to predict HR EMS calls. The

airport proxy represents the degree of correlation that can be expected when a

single-station’s weather data is used to represent the environmental conditions of all

locations within a city.

2.4.2 Averaged-City Proxy

The daily value of each heat stress metric recorded by each individual station

was averaged over the 14 stations to create a daily city-wide heat stress metric

value. This value was then correlated to the daily city-wide HR EMS call total per

100,000 people. The averaged-city proxy represents the degree of correlation that

can be expected when overall averaged weather data is used to represent the

environmental conditions of all locations within a city, which is a method used

within environmental health studies (Graham et al., 2016; Niu et al., 2016).

2.4.3 Station-Specific Proxy

Finally, the station-specific proxy sums the number of HR EMS calls made at a

specific heat metric value (e.g., Tmax of 30◦C) across the 14 stations. For example, if

each of the 14 stations recorded 10 HR EMS calls on the same day that they

recorded a Tmax of 30◦C, the total number of HR EMS calls made at that specific

heat metric value (30◦C) would be 140. This final method better represents the

local meteorological environment of the location at which an individual HR EMS

call was made and provides a more robust estimate for statistical analysis. The total

number of HR EMS calls made at each heat metric value were distributed among 62

evenly-weighted bins with approximately the same number of NHR EMS calls in

each bin. This binning is important in order to perform an OLS regression for

comparative purposes with the airport and averaged-city proxies. Within each bin,
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the number of HR EMS calls correlated with each heat stress metric value were

summed. The mean heat metric value of each bin was used in the OLS regression

fitting process.

2.5 Athlete and Spectator Human Energy Budget Case Studies

Anecdotal evidence from Environment Canada, Hamilton Paramedic Service,

and St. John Ambulance were received regarding excess spectator heat stress

complaints and HR EMS response calls recorded at certain venues during the

Games events. Events of interest included the men’s bronze medal soccer match and

women’s gold medal soccer match on July 25th, and the men’s gold medal soccer

match on July 26th. These events occurred at the Hamilton Pan Am Soccer

Stadium, henceforth referred to as ‘Hamilton Soccer Stadium’.

Minutely weather data from the mesonet station placed at Hamilton Soccer

Stadium (see Figure 2.4) were used for the meteorological inputs required by the

COMFA EB model to calculate the EBs of the athletes and spectators in attendance

at each of the events of interest. The Rabs experienced by athletes and spectators

alike was calculated by Equation 2.6, where an α of 0.37 and an Aeff of 0.78 were

used to represent the albedo of a human and the effective area of a standing human

body that is exposed to radiation, respectively (Kenny et al., 2008). All

physiological input values for the athletes and spectators are shown in Table 2.6.

For athletes, physiological inputs to the COMFA EB model were based on the

activity of three main positions played in the sport of soccer; midfielder, defender,

and goalie. In order to provide more accurate estimates of what a soccer player

experiences in a given game (as opposed to using a constant metabolic intensity

(MET) value of 8.0 METs using the compendium of physical activities (Ainsworth

et al., 2011) and a 0 activity speed), data were applied from a competitive soccer
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Figure 2.4. Hamilton Soccer Centre mesonet station used to monitor environmental
conditions during the Games’ soccer events. Source: Environment Canada.

game completed at Texas Tech University on a warm spring day, since no

physiological data was available from the Games events. Using the MET value from

Ainsworth et al. (2011) would result in highly inaccurate estimates by assuming a

constant Mact for the entire game, which is unrealistic, as is the use of no Va. Thus,

although the data used here are not from the actual soccer games of interest

mentioned above, they provide significantly improved estimates of the activity

conditions experienced by a soccer player, as they are from a competitive, high level

soccer game during warm conditions. To obtain these soccer player’s Mact estimates,

players wore Polar Team Pro heart rate sensors, which measured heart rate (bpm),

Va (ms−1), acceleration (ms−2), and distance (m) at 1-sec intervals, converted to

1-min averages to align with the weather station data. Analogous to the energy
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expenditure estimation method used in Vanos et al. (in review) from Strath et al.

(2000), inputs of age, resting heart rate, activity heart rate, and gender were used to

estimate the energy expenditure of the players, which was output in METs (1 MET

= 58.15 Wm−2).

Spectator physiological inputs were modeled as a “very excited, emotional, and

cheering” individual (MET = 3.0) (Ainsworth et al., 2011) (see Table 2.6). Athletic

soccer clothing estimations were based on the standard configuration of a soccer

uniform. The athletic clothing ensemble insulation estimation was determined by:

Icl = 0.161 + 0.835
∑

Iclu (2.8)

where Iclu is the effective thermal insulation of the individual garments making up

the athlete clothing ensemble in clo (ISO, 2007 Eq. 11). From ISO (2007), the Iclu

for the individual garments of a soccer uniform were briefs/panties (0.03 clo), shirt

(0.07 clo), shorts (0.07 clo), knee-length thick socks (0.06 clo), and soft-soled

athletic shoes (0.02 clo), respectively, resulting in an Icl of 0.37 clo. Similarly,

spectator clothing estimations were based on typical summertime attire, which

includes underwear, a T-shirt, shorts, light socks, and sandals (0.33 clo) (ISO, 2007

Table A.1).

The EB experienced by spectators was determined by using the subjective

interpretation shown in Table 2.3. Athletes, however, are prepared and more

acclimatized, accepting, and expectant of uncomfortable conditions, with better

conditioning resulting in better higher sweat rates and lower heart rates and Tc,

allowing the body to more effectively cope with thermal stressors while performing

physical activity (Casa et al., 2015). For this reason, the EB experienced by

competing soccer athletes are based on a modified subjective interpretation of the
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Table 2.6. Physiological inputs used for the spectator and athlete (soccer player) in
the COMFA model.

Human Input Value

Mact 166 Wm−2

Va 0.2 ms−1

Spectator clo 0.33
Aeff 0.78
α 0.37

Mact varying
Va varying

Athlete clo 0.37
Aeff 0.78
α 0.37

original COMFA values developed for sedentary individuals based on Kenny et al.

(2009b) and Harlan et al. (2006) shown in Table 2.7.

Table 2.7. Subjective interpretation of the COMFA EB model output values for
athletes performing physical activity (Kenny et al., 2009b).

Subjective Interpretation Model Output (Wm−2)

‘Cold’(−2) ≤−151
‘Cool’(−1) −150 to −20
‘Neutral’(0) −20 to +150
‘Warm’(+1) +151 to +250
‘Hot’(+2) ≥+251
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CHAPTER 3

RESULTS

Based on the objectives, the main findings of this study demonstrate that

overall: 1) all heat stress metrics indicate Hamilton, Ontario as an area of escalated

heat exposure within the GTA, 2) generally weak relationships existed between HR

calls and the heat metrics, yet the station-specific proxy showed the strongest

relationships with HR EMS response calls, and 3) spectator and physically active

athlete human EBs during the Games soccer events showed that the greatest heat

stress was experienced during the women’s gold medal match, aligning with Rabs

and Mact values as the greatest contributors to the experienced heat stress.

3.1 Greater Toronto Area Heat Maps

The station-specific seasonal summer averages for each heat stress metric

(Tmax, humidex, WBGT index, and COMFA) are presented with size and color of

circles in Figures 3.1 − 3.4. The numerical seasonal summer average values for each

station for the four heat metrics can be found in Appendix B. The stations with the

highest Tmax values are concentrated near the cities of Toronto [43.7182◦N,

79.3774◦W] and Hamilton [43.2557◦N, 79.8711◦W] − two of the most built-up and

populated urban areas within the GTA. The humidex is highest among the stations

that are within close proximity to Lake Ontario and Lake Erie. A similar trend is

observed by the WBGT index, which is also highly sensitive to the amount of

moisture in the air (see Equation 2.2). It is evident that the area between Lake Erie

and Lake Ontario creates a very humid environment as high humidex and WBGT

index values are observed at stations located between the two lakes.

However, it is noticeable that the Tmax, humidex, and WBGT index metrics’
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values vary minimally among the stations, with ranges < 4◦C. The COMFA metric

has a much larger range of values given the unit of energy at Wm-2, with the highest

values demonstrating a more random distribution than the other heat metrics. This

randomness is likely due to the COMFA model’s dependence on multiple

meteorological variables, meaning that location-specific wind and radiation − and

hence localized atmospheric-convection − conditions are principal influentional

factors, which are not factors in the other four metrics.

Much of the heat mapping results for objective 1 are devoted to detecting

high-heat-exposure areas known as hot spots. Within the GTA, the city of Hamilton

emerges as a hot spot across all of the heat metrics, with the Hamilton Soccer

Center station ranking within the top 4% of the Tmax, humidex, and WBGT index

metric seasonal summer average values among all of the stations. Hamilton Soccer

Center ranked within the top 30% of all COMFA seasonal summer average station

values. A two-sample t-test also confirmed that Hamilton Soccer Center station was

significantly different from the mean of all stations for the Tmax, humidex, and

WBGT index heat metrics. For these reasons, athlete and spectator EBs were

modeled at three Games soccer events in late July at the Hamilton Soccer Stadium

(Section 3.4) to assess the extent to which the weather conditions in Hamilton had

an impact on human TC. More descriptive information will be presented in Section

3.4 regarding athlete and spectator EBs during a mass sporting event.
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Figure 3.1. Station-specific seasonal summer maximum air temperature averages.
Each circle represents an individual station. The color and size of the circle reflects
the magnitude of the heat metric, with darker and larger circles indicating higher
values.
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Figure 3.2. Station-specific seasonal summer maximum humidex averages. Each
circle represents an individual station. The color and size of the circle reflects the
magnitude of the heat metric, with darker and larger circles indicating higher values.
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Figure 3.3. Station-specific seasonal summer maximum WBGT index averages. Each
circle represents an individual station. The color and size of the circle reflects the
magnitude of the heat metric, with darker and larger circles indicating higher values.
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Figure 3.4. Station-specific seasonal summer maximum COMFA averages. Each
circle represents an individual station. The color and size of the circle reflects the
magnitude of the heat metric, with darker and larger circles indicating higher values.
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3.2 EMS Response Calls

Throughout the study period, a total of 11,773 HR and 15,878 NHR EMS

response calls were made within the city limits of Toronto. The total number of

daily HR EMS calls is plotted in Figure 3.5, which depicts a gradual incline in the

daily calls throughout the summer season. Figure 3.6 shows the sex/gender

distribution of the HR EMS calls; 5,073 of the EMS calls were for HR illness in

males, 5,775 in females, and 925 calls were of unknown sex/gender. Similarly, the

age distribution of the HR EMS calls are displayed in Figure 3.7; 273 calls were

made for individuals younger than 15 years of age, 5,716 calls for individuals age 15

− 64 years, 4,903 for individuals aged 65 or older, and 881 calls were unknown. The

map of the distribution of the HR EMS calls nearest to each station illustrates

geospatial variation in the burden of heat stress in Toronto (Figure 3.8). In

particular, higher numbers of standardized HR EMS calls can be seen near the

stations that are located northwest of the downtown core (Table 2.5).

Figure 3.5. Daily heat-related EMS ambulance response call totals over the study
period. The dashed blue line represents the linear trend.
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Figure 3.6: Total heat-related EMS ambulance response calls seperated by gender.

Figure 3.7. Total heat-related EMS ambulance response calls seperated by age (orange
columns), with blue columns representing the number of heat-related calls made based
on the City of Toronto age group population (2011 Census), displayed in percent.
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Figure 3.8. Visual representation of the total heat-related EMS ambulance response
calls seperated by station. Each color coordinates with one of the 14 mesonet moni-
toring stations (stars) dispersed within or near the Toronto City limits.

3.3 Heat Metrics, Exposure Proxies, and EMS Response Calls

Table 3.1 displays the calculated values of the slope and variance (R2 value),

with significance of the correlation (p-value) indicated, based on the OLS regression

that was applied to the three spatial exposure proxies (airport, averaged- city, and

station-specific). Both the slope and variance values gradually increase among all

heat stress metrics as the representation of the current meteorological environment

moves from a broader-scale representation to a more local-scale representation,

indicating that the station-specific spatial exposure proxy provides the strongest

relationship between the heat metric values and the number of HR EMS response

calls made. Slopes ranged from 0.001 − 0.047 for the airport proxy, 0.003 − 0.056

for the averaged-city proxy, and 0.003 − 0.066 for the station-specific proxy. The

slope of the OLS regression for each heat stress metric represents the relative change
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in number of HR EMS calls per 1◦C or 1 Wm−2. Variances ranged from 0.000 −

0.048 for the airport proxy, 0.009 − 0.075 for the averaged-city proxy, and 0.019 −

0.111 for the station-specific proxy. These slopes and variances show that the

station-specific proxy performs systematically better across all heat stress metrics.

The multi-variate analysis identified the COMFA heat stress metric as the most

significant predictor of HR EMS response calls for the airport (R2 = 0.048),

averaged-city (R2 = 0.075), and station-specific proxy (R2 = 0.111). However, all

five heat stress metrics for all three spatial exposure proxies show a weak

relationship with HR EMS response calls (maximum R2 ≤ 0.111) for the two-month

study period. The greatest differences between slope and variance values occur

between the airport and station-specific proxies with maximum differences of 0.022

(Tmax) and 0.063 (COMFA), respectively. The WBGT consistently reported the

lowest correlation values with HR EMS ambulance calls. Low slope and variance

values are attributable to Toronto’s below average summertime temperatures during

July and August 2015, further discussed in Section 4.1.

Only when the representation of the meteorological environment for human

exposure progressed from broader-scale to local-scale did p-values reveal that

specific heat metrics had a significant correlation with HR EMS response calls; the

COMFA heat stress metric within the averaged-city proxy and the Tmin and

COMFA heat stress metrics within the station-specific proxy (Table 3.1). Figures

3.9 − 3.11 display the OLS regression line of best fit and 95th percentile CIs for each

heat stress metric for each spatial exposure proxy. For all three spatial exposure

proxies, the number of HR EMS response calls steadily rises with increasingly hot,

or hot and humid, conditions.
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Table 3.1. The OLS regression slope and variance values for each of the three spatial
exposure proxies. Significance of the correlation is indicated by an *.

Airport Averaged-City Station-Specific

Slope R2 Slope R2 Slope R2

Tmax 0.020 0.008 0.029 0.016 0.042 0.044
Tmin 0.047 0.031 0.056 0.039 0.066 0.081*

Humidex 0.002 0.0002 0.024 0.021 0.023 0.031
WBGT 0.001 0.0000 0.025 0.009 0.036 0.019
COMFA 0.002 0.048 0.003 0.075* 0.003 0.111*

3.4 Athlete and Spectator Energy Budget Case Studies

Anecdotal evidence from Environment Canada, Hamilton Paramedic Service,

and St. John Ambulance revealed that a combined 10 HR EMS calls were made

during the men’s bronze medal and women’s gold medal soccer matches on July

25th, and that 13 HR EMS calls were made during the men’s gold medal soccer

match on July 26th. All HR EMS calls were made directly from the Hamilton

Soccer Stadium venue. One spectator that attended the men’s bronze medal soccer

match stated that “on the way there [the stadium], there were long lines for the

shuttle buses, and several people had to be treated for heat stroke” (Sills, 2017).

Similarly, on July 26th on-site paramedics noted that the conditions at the venue

were “very hot” and that “multiple calls from different agencies were calling at the

same time” and that they “had to call in crews to stand-by in hard enclosure [the

stadium] due to the call volume” (Hamilton Paramedic Service, 2017).

The perceived HR EMS calls and anecdotal communication mentioned above

are consistent with the heat stress results from the modeled spectator EBs during

each of the three soccer matches. Besides for the duration of the game, spectator

EBs were also modeled for the hour before and after the game to account for those

spectators that arrived early to watch athlete warm-ups and stayed late to watch

the medal ceremony. Figure 3.12 displays the temporal changes of the modeled
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Figure 3.9. Plots of daily heat stress metric values versus the number of HR EMS
calls made per 100,000 people for the airport proxy for the daily A) maximum air
temperature, B) minimum air temperature, C) maximum humidex, D) maximum
WBGT index, and E) maximum COMFA EB. The black circles represent the number
of HR EMS response calls at a given heat stress metric value. The linear trendline (red
line), which produced the strongest R2 values, and 95th percentile CIs (red shaded
area) are displayed for each heat metric, respectively.
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Figure 3.10. Plots of daily heat stress metric values versus the number of HR EMS
calls made per 100,000 people for the averaged-city airport proxy for the daily A)
maximum air temperature, B) minimum air temperature, C) maximum humidex, D)
maximum WBGT index, and E) maximum COMFA EB. The black circles represent
the number of HR EMS response calls at a given heat stress metric value. The linear
trendline (red line), which produced the strongest R2 values, and 95th percentile CIs
(red shaded area) are displayed for each heat metric, respectively.
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Figure 3.11. Plots of daily heat stress metric values versus the number of HR EMS
calls made per 100,000 people for the station-specific airport proxy for the daily A)
maximum air temperature, B) minimum air temperature, C) maximum humidex, D)
maximum WBGT index, and E) maximum COMFA EB. The black circles represent
the number of HR EMS response calls at a given heat stress metric value. The linear
trendline (red line), which produced the strongest R2 values, and 95th percentile CIs
(red shaded area) are displayed for each heat metric, respectively.
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spectator EBs. The EB results found in the three-match spectator analysis fell

within the range of ‘neutral’ (little threat of heat stress) to ‘hot’ (dangerous threat

of heat stress). EB values ranged from −26.9 − 277.7 Wm−2 for the men’s bronze

medal match, 22.41 − 576.2 Wm−2 for the women’s gold medal match, and −55.9 −

243.1 Wm−2 for the men’s gold medal match (Figure 3.13). Even with low metabolic

rate modeling (Mact = 166 Wm−2), the spectator EBs reached well above the ‘heat

stress zone’ (> 121 Wm−2) (Brown and Gillespie, 1986; Harlan et al., 2006), and

commonly remained in the ‘slightly warm’ range (moderate threat of heat stress) or

higher for the second half of each soccer event. Overall, a steady increase in EBs

throughout the game period is observed for all three matches (Figure 3.12).

Figure 3.12. Temporal changes of the modeled spectator EBs for each of the three
soccer matches. The start and end times of each match are as follows; 13:05 −
15:05 July 25, 2015 (Men’s Bronze Medal Match) (red line), 18:35 − 20:35 July 25,
2015 (Women’s Gold Medal Match) (blue line), and 13:05 − 15:05 July 26, 2015
(Men’s Gold Medal Match) (yellow line). The background colors are indicative of the
spectator subjective interpretation to the COMFA EB model output (Table 2.4).

Peak EB values, and therefore the greatest thermal discomfort, occurred during

the women’s gold medal soccer match (Figure 3.13), where spectators remained in
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Figure 3.13. Box plot depicting the range of spectator EB values during each of the
three soccer matches. The interquartile range (IQR) is indicated by the length of
each box plot (25th to 75th percentiles), with outliers marked by ◦.

the ‘hot’ range for almost the entirety of the game (7:00pm − 8:28pm LST and

8:36pm - 9:35pm LST) (Figure 3.12). The men’s bronze medal match recorded a

dangerous threat of heat stress for 27 minutes total mainly from 3:11pm − 3:38pm

LST. The most thermally comfortable game was the men’s gold medal match, which

only exceeded the ‘hot’ threshold for 2 minutes from 3:18pm − 3:19pm LST.

However, as the majority of HR EMS calls were made during the men’s gold medal

match, this result emphasizes that mass gatherings have the ability to enhance heat

stress and thus the number of HR illnesses occurring at lower EB levels. The

temporal changes in the EB streams that produce the final spectator EB (based on

Equation 2.3) for each of the three events are shown in Appendix C. The EB for the

spectators follows a pattern strongly related to the plotted Rabs because of relatively

constant Mact, C, E, and Lemit.

Athlete EBs were modeled for the duration of the game and the hour before to
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account for pre-game warm-ups, with the assumption that the athletes remained

outdoors during the half-time break. Figures 3.14 − 3.16 display the temporal

changes of the modeled athlete EBs for the men’s bronze medal match, the women’s

gold medal match, and the men’s gold medal match, respectively. All three player

position’s had very similar EB values for each of the soccer events. A two-sample

t-test confirmed that only the midfielder and goalie EB values for the men’s bronze

and gold medal matches were significantly different from one another. During the

women’s gold medal match, all three players endured ‘hot’ EB levels for the whole

game (6:35pm − 8:35pm LST), whereas the men’s bronze and gold medal matches

reported a dangerous threat of heat stress primarily during the second half of the

game (2:15pm − 3:05pm LST).

The dip in player EB values approximately two hours into each soccer event

can be attributed to the approximately 20 minute half-time break, when players

generally sit and a decrease in Mact occurs. The temporal changes in the EB streams

that produce the final athlete EB (based on Equation 2.3) for each of the three

player positions for each of the three events are shown in Appendix D. The EB

follows a pattern strongly related to the plotted Mact for the men’s bronze and gold

medal match, and to the plotted Rabs for the women’s gold medal match. These

results are primarily due to a larger variance in wind speeds during the women’s

gold medal match, which causes Rabs to vary more (based on Equation 2.5).
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Figure 3.14. Temporal changes of the modeled athlete EBs for each of the three player
positions for the men’s bronze medal match. The start and end time of the match is
13:05 − 15:05 July 25, 2015, with the half-time break start and end times designated
by black vertical lines. The background colors are indicative of the athlete performing
physical activity subjective interpretation to the COMFA EB model output (Table
2.7).

Figure 3.15. Temporal changes of the modeled athlete EBs for each of the three player
positions for the women’s gold medal match. The start and end time of the match is
18:35 − 20:35 July 25, 2015, with the half-time break start and end times designated
by black vertical lines. The background colors are indicative of the athlete performing
physical activity subjective interpretation to the COMFA EB model output (Table
2.7).
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Figure 3.16. Temporal changes of the modeled athlete EBs for each of the three player
positions for the men’s gold medal match. The start and end time of the match is
13:05 − 15:05 July 26, 2015, with the half-time break start and end times designated
by black vertical lines. The background colors are indicative of the athlete performing
physical activity subjective interpretation to the COMFA EB model output (Table
2.7).
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CHAPTER 4

DISCUSSION

The present thesis aimed to highlight the ability of fine-scale intra-urban

meteorological mesonet stations to better predict the human heat-health response at

specific environmental conditions in Toronto, Canada and surrounding areas.

Results presented provide new information on the potential benefits and uses of

such mesonet systems during large-scale events. These new benefits and uses can

improve our understanding of the variability among common heat stress metrics in

relation to intra-urban heat-health burden to enhance Toronto’s resilience to

extreme heat, with a focus on mass gathering sporting events.

4.1 Geospatial Station Summertime Averages

Through mapping the heat metrics across the city for summer-time averages,

low variability was found in the between-station values for Tmax, humidex, and

WBGT index. Such small spatial heterogeneity indicates that differences in the

LCZ and surface cover among stations had little effect on heat stress metric values.

Since Toronto experienced below average temperatures during the summer of 2015

(Environment Canada, 2016), favorable conditions for the existence of a heatwave

occurred less frequently and the intensity of the UHI was likely smaller, such as

what occurs during the winter season (Klysik and Fortuniak, 1999), which in turn

presumably limited the distinct signatures of intensity of heat and intra-urban

variability within the GTA. Another reason for this low variability may be that the

meteorological dataset was not of sufficient length, with no anomalous hot or cold

days, to present a wider variance among stations. However, geospatial map results

show that the UHI effect is prevalent in both Toronto and Hamilton when looking
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at the variation in average summertime Tmax station values (Figure 3.1). Oke and

Hannell (1970) have shown that the local steel works in Hamilton, Ontario is

responsible for producing its own UHI. Similarly, Blair (2006) found that within the

Toronto-Hamilton urban airshed, meteorological data indicated that two large UHIs

are present in the downtown areas of Toronto and Hamilton.

The larger range of summer-time average COMFA values can be attributed to

the model’s dependence on several environmental and physiological variables as

compared to the direct metrics, which adds information that may increase the value

for small-scale studies where fine-scale weather and personal information is available

(McGregor and Vanos, in review), but also adds complexity. Therefore, the COMFA

EB model results are more appropriate when the model is applied to calculate the

heat stress experienced by humans at events of short duration rather than over an

entire season (e.g., see Brown and Gillespie, 1986; Kenny et al., 2009a,b; Vanos et

al., 2012a,b,c).

Overall, the spatial maps across the GTA demonstrate the capability of a

mesonet monitoring network to show variations by heat metric and to identify

different areas of escalated risks for HR illness. All heat metrics employed in this

study were in agreement that the area of the GTA with the greatest escalated risk

for HR illness is Hamilton, Ontario, and therefore EMS personnel should concentrate

resources in this area during days of excessive heat. The implementation of a

mesonet monitoring network in any city can ensure the creation of such geospatial

maps, which can be used to inform city public health officials and/or urban planners

of areas of increased heat exposure at a finer intra-urban scale during the summer

season (Muller et al., 2013; Resch et al., 2011). One particular application of these

geospatial maps is the prioritization of hot spot locations for the delay of electricity

shut-offs by energy policy managers (Luber and McGeehin, 2008).
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Previous studies, with similar goals, that have used remotely-sensed surface

temperatures to infer hot spots have stated that providing data at a higher

spatiotemporal frequency should be integrated into public health practice and will

be more useful for city and county level authorities (White-Newsome et al., 2013).

Ng (2012) further expressed that urban climatic spatial information is best

understood by urban planners and governments when the information is presented

visually. Thus, the geospatial heat maps created in the current research may be

extremely valuable for translating research to practice. Companies, such as

WeatherBug, currently utilize weather monitoring networks’ data for informed

decision-making regarding energy efficiency, crop production, public safety, security,

transportation and many other critical functions (Anderson and Usher, 2010). In

this regard, a robust weather observing network is part of the vital infrastructure

needed for modern society.

4.2 Mesonet Monitoring and Human Exposure

This study was the first of its kind to employ within-city weather and EMS

response call data that also provided data at high temporal rates. Related studies

assessing the connection between heat and health often use one or a low number of

stations (Vanos et al., 2012c; Hartz et al., 2013; Graham et al., 2016; Niu et al.,

2016; Ng et al., 2013). However, spatial incongruence can exist when we apply a

point based attribute to an entire area, which in heat research is entitled exposure

misclassification (Kuras et al., 2015; Kuras et al., 2017; Bernhard et al., 2015). By

having more stations present in an urban area, we can more accurately assign

exposures to a health outcome. This was shown in the current study by the

enhanced relationship between the five heat metrics and HR EMS response calls

when employing the station-specific method. Furthermore, more spatially-available
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data in real or near-real time to assess the relationships between heat and human

health is needed to ensure correct classification of the weather conditions present at

the location and time an individual succumbs to heat stress and requires medical

attention. The rapid growth and continued expansion in the number of automated

weather stations and networks can be viewed as a positive step toward expanding

data available for this type of applied meteorological research and service (Meyer

and Hubbard, 1992). Thus the use of this advanced exposure classification method

should be given consideration, especially in cities where 66% of the world’s

population is projected to reside by 2050 (United Nations, 2014), if mesonet

monitoring network resources are available.

The minimal incremental improvement in heat-health response and strength of

the relationship when downscaling from the airport proxy to the averaged-station

proxy to the station-specific proxy, however, suggests that the need for such

local-scale data may not be necessary in moderate weather with no heat waves and

little variation. We hypothesize that these relationships would be stronger in a

summer with warmer temperatures and heat waves present due to the fact that

heat-related EMS response calls were used as the response variable. Furthermore,

research is needed to test the station-specific exposure-response method over a

longer time-scale to see if similar results arise. Benefits of the localized stations also

included connecting the timestamps of each call to each heat metric timestamp.

Most studies use the daily values (Hartz et al., 2013; Cheng et al., 2016), yet with a

mesonet containing highly resolved temporal information, there is value in exploring

intra-daily response.
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4.3 Benefits of Station-Specific Proxy for Urban Heat-Health Studies

Observations from July and August 2015 show a gradual incline in the number

of heat-related EMS response calls with increasingly higher heat values across all

five heat stress metrics (Figures 3.9 - 3.11). This result provides an indication that

EMS response calls are reflecting the health burden effects of heat in the city of

Toronto. Similar results were observed by Dolney and Sheridan (2006) and Graham

et al. (2016), who found that the number of ambulance calls increases by 10% and

12.3%, respectively, during heat events in Toronto. Heat-related EMS response calls

were significantly correlated with the Tmin and COMFA heat metrics, with COMFA

being identified as the most important variable in the multi-metric OLS regression

analyses. The finding that high Tmin may create thermal stress to urban residents,

often being correlated with excessive heat-related morbidity and mortality (Miralles

et al., 2014; Black et al., 2004), is not a new concept. For example, when analyzing

the impact of weather on human mortality in multiple U.S. locations, Kalkstein and

Davis (1989) determined that warm conditions overnight relate to the highest

mortality in summer. Additionally, Goodman et al. (2004) found a 0.4% increase in

total mortality associated with a 1◦C increase in daily Tmin from 1980 − 1996 in

Dublin, Ireland. The significant correlation observed between Tmin and heat-related

EMS response calls in the current study advocates for the use of real-time Tmin

when implementing a heat-health warning system within a city.

The COMFA metric was found to be the strongest predictor of heat-related

illness in this study. With respect to the COMFA energy budget values, a study by

Vanos et al. (2012c) also observed that heat-related EMS response calls were

significantly dependent on the COMFA EB estimations of human TC within-city

station data in Toronto. However, as Vanos et al. (2012c) only used 1 nearby

station to infer weather conditions, the findings of the current study are much more
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robust having used data from 14 stations. This significant dependence is likely due

to the fact that many studies have both tested and incorporated revisions into the

COMFA EB model to ensure maximum agreement between tested subjects

environment-based TC and the budget output (Brown and Gillespie 1986; Kenny et

al. 2009a,b; Vanos et al. 2012a,b,c). In addition, as the only rational metric

employed in this study, the COMFA metric considers all processes pertaining to the

body’s heat generation and heat transfer with the environment, which are

quintessential components to estimating heat stress (Havenith and Fiala, 2015).

The Rabs load is often the largest contributor to human heat gain and TC in warm

conditions (Johansson et al., 2014; Kantor et al., 2014; Taleghani et al., 2015;

Kenny et al., 2008), and the Mact load is often near or above the Rabs load when a

human is exercising (Brotherhood, 2008; Casa et al., 2015). Thus, this study

suggests that outdoor EB modeling has the potential to be a used as a guidance

tool for heat-related illness prediction by EMS resources and application in

bioclimatic urban planning and design to reduce vulnerability to heat stress (Brown

et al., 2015).

The humidex and WBGT index had the lowest correlation with HR EMS

response calls. This result is consistent with some of the WBGT index limitations

underlined by Budd (2008): notably the fact that the metric does not adequately

reflect the heat stress experienced by a human in a very humid and stagnant air

flow environment when the evaporation of sweat is restricted. Originally designed to

control heat-related illnesses in military physical training camps, D’Ambrosio

Alfano et al. (2014) found that WBGT index values do not vary linearly with Mact,

which questions whether the WBGT index is appropriate for heat stress assessment

of a human not performing physical activity. Currently the WBGT index is used

primarily to monitor environmental conditions during high metabolic activities such
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as occupational labor, military training, and athletics, with activity modifications

dependent on the type of activity and index output (see Table 2.2) (Armstrong,

2007). Moreover, the WBGT index output ranges used to indicate heat stress are

not designed for the average person engaging in everyday activities. Further research

is needed to create accurate WBGT index thresholds for the average person. The

humidex, while a ‘perceived temperature’, does not take into account spatial

variations in radiation or wind speed, like the WBGT index and COMFA, which are

fundamental components of heat stress analysis (Brown and Gillespie, 1995).

Another solution to the low correlations observed by the WBGT index (and the

COMFA EB model) could be the errors associated with estimating the radiation

experienced by a human through the use of the globe thermometer. According to

the literature, these errors regularly occur due to three main characteristics of the

globe thermometer; 1) shape and size (Johansson et al., 2014; Kantor and Unger,

2011; Thorsson et al., 2007), 2) color (Johansson et al., 2014; Kantor and Unger,

2011; Kenny et al., 2008; Montieth and Unsworth, 2008), and 3) material (Budd,

2008; Johansson et al., 2014; Kantor and Unger, 2011; Kantor et al., 2014).

Considering that the human physical appearance replicates a cylinder with an

average albedo between 0.33 and 0.40 (Kenny et al., 2008), the spherical shape,

small size (150mm), and black matte color of the globe thermometer, often limiting

the approximation of Rabs to a seated person and overestimating the solar

component of Rabs, does not correctly resemble a human. Additionally, the heavy

copper material (0.4mm thickness) of the globe thermometer regularly causes a slow

response time (approximately 20−30min) to record an accurate Rabs value, which

maybe affects the ability to predict Rabs in shorter timescales, and misses the

influence of intermittent clouds.
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4.4 Heat Stress at Sports Events

The anecdotal evidence from spectators, Environment Canada employees, and

paramedics alike regarding the heat stress experienced during the soccer matches

that took place on July 25th and 26th demonstrates that EMS personnel may have

been unprepared to handle the vast influx of HR illness complaints recorded at the

Hamilton Soccer Stadium venue. With both spectator and athlete EBs exceeding

the ‘hot’ subjective interpretation threshold for all three matches, venue

modifications on such days should be considered for the soccer stadium and other

outdoor facilities that intend to hold mass gatherings in Hamilton, Ontario. For

example, venue modifications could include field-surface-type transition from

synthetic turf to natural grass, as the radiational properties of such surfaces affects

both the air temperature and the interactions of total radiation fluxes with the

human body within a microclimate (Hardin and Vanos, 2017), and/or the addition

of shade sails over top of the stadium and fans to support air flow. Brown (2011)

emphasizes how design modifications to outdoor environments can improve TC and

can save lives in extreme cases.

Such modifications could greatly impact short-term TC during sports events

since the temporal changes in the EB streams show that the final EBs are strongly

influenced by a combination of the Rabs and Mact. Again this result emphasizes the

need for a better measurement of the total Rabs by a human in an outdoor

environment by use of some method other than the globe thermometer. Without

the mesonet station on site, spectator and athlete EB analysis would not have been

possible. In the women’s gold medal match, where both spectator and athlete EBs

climbed rapidly into the upper levels of the ‘hot’ range, attendees experienced the

greatest levels of Rabs and, therefore the highest levels of thermal discomfort. No

other study has yet to apply EB modeling to spectators at a sporting event,
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however, such a method may become more important at large-scale sporting events

in hot-humid climates in the coming years, such as the 2020 Summer Olympics in

Tokyo, Japan and the 2022 FIFA World Cup in Qatar (Matzarakis and Frohlich,

2014; Sofotasiou et al., 2015; Tsunematsu et al., 2016). Matzarakis and Frohlich

(2014) specifically express that a large-scale sports event in Qatar may be harmful

for unacclimatized visitors, if the event takes place during months with extreme

heat conditions, and suggest the winter months as a more appropriate time when

thermally comfortable conditions are more common.

The athletes endured the highest EB rates overall leading studies like that by

Casa et al. (2015) to recommend that public health officials, to maximize athlete

safety and performance, establish on-site emergency response plans for venues (like

Hamilton Soccer Stadium) that are located in hot spot areas. Yet, often times at

mass gathering events it is the larger spectator volumes that can lead to potentially

higher patient volumes (Milsten et al., 2003). Considering that the Vw values

recorded by the mesonet station placed in open air just outside Hamilton Soccer

Stadium (see Figure 2.4) were used as inputs to calculate the total EBs, it can be

assumed that the heat stress experienced by the spectators in the stadium was likely

higher than calculated due to limited air flow in the crowded stands. Additionally,

the orientation of the stadium, with stand-seating facing directly east and west,

likely caused the spectators sitting in the west-facing stands to experience more heat

stress than others due to the great amount of solar Rabs from the setting sun during

the event. We do not know where most of the EMS calls came from at the stadium

so we can only speculate that more may have come from the west-facing stands.

Kenny et al. (2008) and Vanos et al. (2012a) similarly emphasize that radiation

is an important variable to consider in outdoor TC research since Rabs is commonly

the largest contributor to the human EB equation and has a strong negative

63



Texas Tech University, Alexandria J. Herdt, August 2017

relationship with human TC. Many studies have suggested that reducing Rabs by

increasing the shade over a structure and implementing natural surfaces will have a

positive effect on human TC and heat health and will reduce summer temperatures

(Graham et al., 2016; Vanos et al., 2016; Giannakis et al., 2016; Perini and

Magliocco, 2014; Vanos et al., 2012c). Vanos et al. (2012c) explains that the

sensitivity of the COMFA EB output to Rabs variations should influence the

installment of more urban weather stations to improve spatial modeling of hot spots

which will serve as a guide to EMS deployment resources. Positioning such EMS

deployment resources in hot spot areas during episodes of hot weather and/or

large-scale events and providing sufficient staffing for those resources are both vital

strategies for reducing HR illness cases (Dolney and Sheridan, 2006). In preparation

for the 2020 Summer Olympics in Tokyo, Japan that will take place during Tokyo’s

hot and humid summer, potentially exposing attendees to the most challenging

weather conditions ever observed in the modern history of the Olympic Games, city

officials should seriously consider the development of a health and weather mesonet

monitoring package that would encompass monitoring and prediction products

focused on heat stress. Like at the Games, it would be beneficial for attendees to be

able to access weather data from the nearest mesonet station on their smart phone

at the Olympics to influence behavior and decision-making by an individual to take

the necessary precautions to avoid succumbing to heat illness.

4.5 Limitations and Future Recommendations

As with all scientific research, there are limitations to this study. These

limitations involve finite observational weather data, possible TEMS response call

mis-diagnosis, and deficiency of socio-economic, demographic, and geographic

human information, all of which will be discussed in more detail herein.
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4.5.1 Mesonet Monitoring Data

A few mesonet monitoring network stations, assembled by the MSC of

Environment Canada in preparation for the Games, began collecting data in May

2015. However, the full array of stations were not completely operational until the

beginning of July 2015. Additionally, the gradual decommission of the stations

began in September 2015. As a result, the meteorological dataset used to

accomplish the objectives of this study was limited to only 2 months of data (July

and August 2015) in order to incorporate data from all 53 stations. A study that

utilizes a small dataset has a reduced chance of detecting a true effect estimate and

a reduced likelihood that a statistically significant result reflects a true effect due to

wide confidence intervals. The consequences of this often include over- or

underestimations of the effect size and low reproducibility of results. Knowing this,

Environment Canada should consider the permanent operational reinstatement of

all 53 mesonet stations to construct a real-time evidence base for analysis that may

be used to determine cutting-edge heat-health relationships in Toronto in the future.

4.5.2 Heat-related Illness Mis-Diagnosis

The MPDS is designed to make quick decisions regarding the patient’s needs

when a call is made, often focusing less on assigning an accurate medical diagnosis.

This rapid assessment can potentially lead to the over-turning of calls that were

originally classified as ‘heat exposure’ to a different diagnosis and vice versa. In

addition, this study utilizes a broader subset of MPDS codes that have been

previously designated as possible HR health issues which do not specifically include

the word ‘heat’ within their code. However, there is a strong likelihood that not all

of the health issues within the subset of MPDS codes used were directly HR on a

given day or within a given hour. This study, therefore, may have inherently
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mis-represented or overestimated the total number of calls that are directly

attributed to heat. Lower correlations among the heat stress metrics and the HR

EMS ambulance response calls may have occurred as a result.

4.5.3 Heat-related EMS Caller Information Deficiency

Without additional data such as the socio-economic status, demographic

information, and geographic origin of a caller, as well as the activities participated

in prior to the call and whether the caller was inside or outside, it is difficult to

explain why higher call ratios were observed in certain locations within the city of

Toronto. Harlan and Ruddell (2011) and Reid et al. (2009) express the importance

of possessing such additional data for indentification of the most vulnerable

populations within a city since health burdens fall disproportionately on urban

residents. For example, are those most at risk visiting tourists, engaged in physical

activities, or living in poorer housing types with no air conditioning or in local hot

spot areas? Although identifying such spatial risk factors in Toronto during the

summer of 2015 was not a primary objective of this particular study, access to and

analyses of these types of factors could prove beneficial to ensuring that EMS

dispatch services are targeted to the most vulnerable populations beyond just the

areas of escalated heat exposure as were pinpointed in this study. However, in many

cases this caller information is not included in available medical dispatch data due

to confidentiality constraints.

4.6 Conclusions

This study assessed the spatiotemporal relationships between five heat stress

metrics and HR EMS ambulance response calls in Toronto, Canada during a

large-scale sports event. The five heat metrics examined were Tmax, Tmin, the
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humidex, the WBGT index, and the COMFA human EB model. Novel fine-scale

meteorological data, from a within-city mesonet system of 53 weather stations, were

used as input to calculate heat metric values on an hourly time scale for various

locations across the GTA for July and August 2015. All EMS response calls and the

respective call locations for the duration of this time period were utilized as well.

EMS response call results were reported as ‘calls per 100,000’, a number that may

be more useful for planners who can multiply the rates by the estimated population

present and obtain a number of anticipated heat-related illness patients. This

unique combination of fine-scale meteorological data with EMS call data was

applied in three ways: 1) to determine the GTA’s areas of escalated heat exposure,

2) to demonstrate the ability of various heat metrics and spatial exposure proxies to

predict heat-related EMS response calls, and 3) to showcase the benefits of using

outdoor EB modeling as a meaningful tool for heat stress forecasting at mass

gathering events.

Results reveal an overall consensus among heat metrics that Hamilton, Ontario

was the area of greatest escalated risk for HR illness within the GTA, that generally

weak relationships existed between HR EMS response calls and the heat metrics,

with the ‘station-specific’ proxy and the COMFA metric showing the strongest

relationships, and that spectator and physically active athlete human EB variations

during Games events were largely influenced by Rabs and Mact values. These results

are significant because they emphasize the various potential benefits and products

(e.g., heat vulnerability maps, public real-time local weather information) that can

come from implementing such a mesonet monitoring network for both short-term

and long-term purposes. The analysis performed in this study could provide even

more detail if additional demographic, socio-economic, and situational data is

acquired regarding the heat-related EMS response calls. These results can be
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utilized by urban planners and EMS personnel to be aware of areas of high heat

stress, thereby knowing the most crucial areas in which to implement corrective

bioclimatic design and dispatch EMS resources to, respectively, on days of excessive

heat.
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Arellano, 2014: Mega-heatwave temperatures due to combined soil desiccation
and atmospheric heat accumulation. Nature Geoscience, 7 (5), 345–349,
doi:10.1038/ngeo2141, URL
http://www.nature.com/doifinder/10.1038/ngeo2141.

Monteith, J. L. and M. H. Unsworth, 1990: Principles of environmental physics, 2nd
Edition. Edward Arnold, London, 197, doi:10.1016/B978-0-12-386910-4.00026-3.

Muller, C. L., L. Chapman, C. S. B. Grimmond, D. T. Young, and X. Cai, 2013:
Sensors and the city: A review of urban meteorological networks. International
Journal of Climatology, 33 (7), 1585–1600, doi:10.1002/joc.3678.

Nadel, E., C. Wenger, M. Roberts, J. Stolwijk, and E. Cafarelli, 1977: Physiological
defenses against hyperthermia of exercise. Annals of the New York Academy of
Sciences, 301 (1), 98–109.

Ng, C. F. S., K. Ueda, M. Ono, H. Nitta, and A. Takami, 2014: Characterizing the
effect of summer temperature on heatstroke-related emergency ambulance
dispatches in the Kanto area of Japan. International Journal of Biometeorology,
58 (5), 941–948, doi:10.1007/s00484-013-0677-4.

Ng, E., 2012: Towards planning and practical understanding of the need for
meteorological and climatic information in the design of high-density cities: A
case-based study of Hong Kong. International Journal of Climatology, 32 (4),
582–598, doi:10.1002/joc.2292.

Niu, Y., R. Chen, C. Liu, P. Ran, A. Chen, X. Chen, and H. Kan, 2016: The
association between ambient temperature and out-of-hospital cardiac arrest in
Guangzhou, China. Science of The Total Environment, 572, 114–118,
doi:10.1016/j.scitotenv.2016.07.205, URL
http://linkinghub.elsevier.com/retrieve/pii/S004896971631659X.

76



Texas Tech University, Alexandria J. Herdt, August 2017

Oke, T. R., 1987: Boundary layer climates, Second edition. 435 pp.,
doi:10.1017/CBO9781107415324.004, arXiv:1011.1669v3.

Oke, T. R. and F. Hannell, 1970: The form of the urban heat island in Hamilton,
Canada. WMO Technical Note, 108, 113–126.

Oleson, K. W., A. Monaghan, O. Wilhelmi, M. Barlage, N. Brunsell, J. Feddema,
L. Hu, and D. F. Steinhoff, 2015: Interactions between urbanization, heat stress,
and climate change. Climatic Change, 129 (3-4), 525–541,
doi:10.1007/s10584-013-0936-8.

Peel, B., B. L. Finlayson, and T. A. McMahon, 2007: Updated world map of the
Koppen-Geiger climate classication.pdf. Hydrology and Earth System Sciences,
11 (2001), 1633–1644, doi:10.5194/hess-11-1633-2007, URL
http://www.hydrol-earth-syst-sci.net/11/1633/2007/hess-11-1633-2007.pdf.

Penney, J., 2008: Climate change adaptation in the city of Toronto: lessons for
Great Lakes Communities. Clean Air Partnership.

Perini, K. and A. Magliocco, 2014: Effects of vegetation, urban density, building
height, and atmospheric conditions on local temperatures and thermal comfort.
Urban Forestry and Urban Greening, 13 (3), 495–506,
doi:10.1016/j.ufug.2014.03.003, URL
http://dx.doi.org/10.1016/j.ufug.2014.03.003.

Perron, A. D., W. J. Brady, C. B. Custalow, and D. M. Johnson, 2005:
ASSOCIATION OF HEAT INDEX andPATIENT VOLUME AT A MASS
GATHERING EVENT. Prehospital Emergency Care, 9 (1), 49–52,
doi:10.1080/10903120590891976, URL
http://www.tandfonline.com/doi/full/10.1080/10903120590891976.

Psikuta, A., et al., 2012: Validation of the Fiala multi-node thermophysiological
model for UTCI application. International Journal of Biometeorology, 56 (3),
443–460, doi:10.1007/s00484-011-0450-5.

Reid, C., M. O’Neill, C. Gronlund, S. Brines, D. Brown, A. Diez-Roux, and
J. Schwartz, 2009: Mapping Community Determinants of Heat Vulnerability.
Environmental health perspectives, 117 (11), 1730–1736,
doi:10.1289/ehp.0900683.

Resch, B., M. Mittleboeck, S. Lipson, M. Welsh, J. Bers, R. Britter, C. Ratti, and
T. Blaschke, 2011: Integrated Urban Sensing: A Geo-sensor Network for Public
Health Monitoring and Beyond. International Journal of Geographical
Information Science, URL http://dspace.mit.edu/handle/1721.1/64636.

77



Texas Tech University, Alexandria J. Herdt, August 2017

Rinner, C. and M. Hussain, 2011: Toronto’s urban heat island-exploring the
relationship between land use and surface temperature. Remote Sensing, 3 (6),
1251–1265, doi:10.3390/rs3061251.

Salata, F., I. Golasi, A. D. L. Vollaro, and R. D. L. Vollaro, 2015: How high albedo
and traditional buildings’ materials and vegetation affect the quality of urban
microclimate. A case study. Energy and Buildings, 99, 32–49,
doi:10.1016/j.enbuild.2015.04.010, URL
http://dx.doi.org/10.1016/j.enbuild.2015.04.010.

Scott, D. and C. Lemieux, 2010: Weather and climate information for tourism.
Procedia Environmental Sciences, 1 (1), 146–183,
doi:10.1016/j.proenv.2010.09.011, URL
http://dx.doi.org/10.1016/j.proenv.2010.09.011.

Scutchfield, F. and C. Keck, 2003: Principles of public health practice. Cengage
Learning.

Sheridan, S. C., A. J. Kalkstein, and L. S. Kalkstein, 2009: Trends in heat-related
mortality in the United States, 1975-2004. Natural Hazards, 50 (1), 145–160,
doi:10.1007/s11069-008-9327-2.

Sheridan, S. C. and L. S. Kalkstein, 2004: Progress in heat watch-warning system
technology. Bulletin of the American Meteorological Society, 85 (12), 1931–1941,
doi:10.1175/BAMS-85-12-1931.

Sills, D., 2017: Personal communication with David Sills (Environment Canada).

Smoyer-Tomic, K. E. and D. G. C. Rainham, 2001: Beating the heat: Development
and evaluation of a Canadian hot weather health-response plan. Environmental
Health Perspectives, 109 (12), 1241–1248, doi:10.1289/ehp.011091241.

Sofotasiou, P., B. R. Hughes, and J. K. Calautit, 2015: Qatar 2022: Facing the
FIFA World Cup climatic and legacy challenges. Sustainable Cities and Society,
14 (1), 16–30, doi:10.1016/j.scs.2014.07.007.

Solis, P., J. K. Vanos, and R. Forbis, 2016: The Decision-Making/Accountability
Spatial Incongruence Problem for research linking environmental science and
policy. Geographical Review, 1–25, doi:10.1111/gere.12240, URL
http://doi.wiley.com/10.1111/gere.12240.

Steffen, R., A. Bouchama, A. Johansson, J. Dvorak, N. Isla, C. Smallwood, and
Z. a. Memish, 2012: Non-communicable health risks during mass gatherings. The
Lancet Infectious Diseases, 12 (2), 142–149, doi:10.1016/S1473-3099(11)70293-6.

78



Texas Tech University, Alexandria J. Herdt, August 2017

Stewart, I. D. and T. R. Oke, 2012: Local climate zones for urban temperature
studies. Bulletin of the American Meteorological Society, 93 (12), 1879–1900,
doi:10.1175/BAMS-D-11-00019.1, arXiv:1011.1669v3.

Strath, S., A. Swartz, D. Bassett, W. OBrien, G. King, and B. Ainsworth, 2000:
Evaluation of heart rate as a method for assessing moderate intensity physical
activity. Medicine and Science in Sports and Exercise, 32, 465–470.

Taleghani, M., L. Kleerekoper, M. Tenpierik, and A. Van Den Dobbelsteen, 2015:
Outdoor thermal comfort within five different urban forms in the Netherlands.
Building and Environment, 83, 65–78, doi:10.1016/j.buildenv.2014.03.014, URL
http://dx.doi.org/10.1016/j.buildenv.2014.03.014.

Tamerius, J. D., E. K. Wise, C. K. Uejio, A. L. McCoy, and A. C. Comrie, 2007:
Climate and human health: Synthesizing environmental complexity and
uncertainty. Stochastic Environmental Research and Risk Assessment, 21 (5),
601–613, doi:10.1007/s00477-007-0142-1.

Thorsson, S., F. Lindberg, I. Eliasson, and B. Holmer, 2007: Different methods for
estimating the mean radiant temperature in an outdoor urban setting.
International Journal of Climatology, Vol. 27, 1983–1993, doi:10.1002/joc.1537,
joc.1492.

Tsunematsu, N., H. Yokoyama, T. Honjo, A. Ichihashi, H. Ando, and N. Shigyo,
2016: Relationship between land use variations and spatiotemporal changes in
amounts of thermal infrared energy emitted from urban surfaces in downtown
Tokyo on hot summer days. Urban Climate, 17, 67–79,
doi:10.1016/j.uclim.2016.03.002, URL
http://dx.doi.org/10.1016/j.uclim.2016.03.002.

Uejio, C. K., O. V. Wilhelmi, J. S. Golden, D. M. Mills, S. P. Gulino, and J. P.
Samenow, 2011: Intra-urban societal vulnerability to extreme heat: The role of
heat exposure and the built environment, socioeconomics, and neighborhood
stability. Health and Place, 17 (2), 498–507,
doi:10.1016/j.healthplace.2010.12.005, URL
http://dx.doi.org/10.1016/j.healthplace.2010.12.005.

United Nations Department of Economic and Social Affairs Population Division,
2014: World Urbanization Prospects: The 2014 Revision, Highlights. United
Nations.

Vanos, J., A. Herdt, and M. Lochbaum, in review: Effects of Physical Activity and
Shade on the Heat Balance and Thermal Perceptions of Children in a Playground
Microclimate. Submitted to Building and Environment.

79



Texas Tech University, Alexandria J. Herdt, August 2017

Vanos, J. K., A. Middel, G. R. McKercher, E. R. Kuras, and B. L. Ruddell, 2016:
Hot playgrounds and children’s health: A multiscale analysis of surface
temperatures in Arizona, USA. Landscape and Urban Planning, 146, 29–42,
doi:10.1016/j.landurbplan.2015.10.007, URL
http://dx.doi.org/10.1016/j.landurbplan.2015.10.007.

Vanos, J. K., J. S. Warland, T. J. Gillespie, and N. A. Kenny, 2012a: Improved
predictive ability of climate-human-behaviour interactions with modifications to
the COMFA outdoor energy budget model. International Journal of
Biometeorology, 56 (6), 1065–1074, doi:10.1007/s00484-012-0522-1.

Vanos, J. K., J. S. Warland, T. J. Gillespie, and N. A. Kenny, 2012b: Thermal
comfort modelling of body temperature and psychological variations of a human
exercising in an outdoor environment. International Journal of Biometeorology,
56 (1), 21–32, doi:10.1007/s00484-010-0393-2, ISBN 0 86776729 4.

Vanos, J. K., J. S. Warland, T. J. Gillespie, G. A. Slater, R. D. Brown, and N. A.
Kenny, 2012c: Human energy budget modeling in urban parks in toronto and
applications to emergency heat stress preparedness. Journal of Applied
Meteorology and Climatology, 51 (9), 1639–1653, doi:10.1175/JAMC-D-11-0245.1.

Wang, Y., U. Berardi, and H. Akbari, 2016: Comparing the effects of urban heat
island mitigation strategies for Toronto, Canada. Energy and Buildings, 114,
2–19, doi:10.1016/j.enbuild.2015.06.046, URL
http://dx.doi.org/10.1016/j.enbuild.2015.06.046.

Wetterhall, S. F., D. M. Coulombier, J. M. Herndon, S. Zaza, and J. D. Cantwell,
1998: Medical care delivery at the 1996 Olympic Games. The Journal of the
American Medical Association, 279 (18), 1463–1468.

White-Newsome, J. L., S. J. Brines, D. G. Brown, J. Timothy Dvonch, C. J.
Gronlund, K. Zhang, E. M. Oswald, and M. S. O’Neill, 2013: Validating
satellite-derived land surface temperature with in situ measurements: A public
health perspective. Environmental Health Perspectives, 121 (8), 925–931,
doi:10.1289/ehp.1206176.

Yaghoobian, N., J. Kleissl, and E. S. Krayenhoff, 2010: Modeling the thermal effects
of artificial turf on the urban environment. Journal of Applied Meteorology and
Climatology, 49 (3), 332–345, doi:10.1175/2009JAMC2198.1.

Yardley, J., R. J. Sigal, and G. P. Kenny, 2011: Heat health planning: The
importance of social and community factors. Global Environmental Change,
21 (2), 670–679, doi:10.1016/j.gloenvcha.2010.11.010, URL
http://dx.doi.org/10.1016/j.gloenvcha.2010.11.010.

80



Texas Tech University, Alexandria J. Herdt, August 2017

Zhang, K., Y. Li, J. D. Schwartz, and M. S. O’Neill, 2014: What weather variables
are important in predicting heat-related mortality? A new application of
statistical learning methods. Environmental Research, 132, 350–359,
doi:10.1016/j.envres.2014.04.004, URL
http://dx.doi.org/10.1016/j.envres.2014.04.004.

Zhang, K., R. B. Rood, G. Michailidis, E. M. Oswald, J. D. Schwartz, A. Zanobetti,
K. L. Ebi, and M. S. O’Neill, 2012: Comparing exposure metrics for classifying
’dangerous heat’ in heat wave and health warning systems. Environment
International, 46, 23–29, doi:10.1016/j.envint.2012.05.001, URL
http://dx.doi.org/10.1016/j.envint.2012.05.001.

81



Texas Tech University, Alexandria J. Herdt, August 2017

APPENDIX A

Table A.1: Mesonet weather station locations, LCZs, and surface covers.

STN NUMBER STN NAME LAT LONG LCZ SFC COVER

6116200 UDORA (STRONG) 44.250◦N -79.200◦W C - Bush, scrub Grass
6116201 HARDWOOD MOUNTAIN BIKE 44.517◦N -79.583◦W B - Scattered trees Grass
6136285 ATMOS FENWICK 43.050◦N -79.367◦W 9B - Sparsely built with scattered trees Grass
6136290 ROYAL CANADIAN HENLEY 43.191◦N -79.267◦W 9F - Sparsely built with sand Sand/Gravel
6136300 VINELAND (STONEY RIDGE) 43.150◦N -79.383◦W 9B - Sparsely built with scattered trees Grass/Gravel
6136303 WAINFLEET (SKYDIVE) 42.883◦N -79.350◦W D - Low plants Grass
6136305 WELLAND FLATWATER CNTR 42.967◦N -79.250◦W CG - Bush, scrub, and water Membrane
6136308 WINONA (VINE ESTATES) 43.217◦N -79.683◦W 6E - Open low-rise with bare rock Gravel
6140942 BRANTFORD AIRPORT 43.133◦N -80.333◦W N/A N/A
6153170 HALTON HILLS 43.600◦N -80.050◦W 9CD - Sparsely built with low plants Grass
6156130 ATMOS BRAMPTON 43.783◦N -79.767◦W D - Low plants Grass
6156131 ATMOS CAMPBELLVILLE 43.450◦N -80.017◦W BD - Scattered trees and low plants Grass
6156132 ATMOS CLAREMONT 43.933◦N -79.083◦W 9B - Sparsely built with scattered trees Grass
6156133 ATMOS ERIN 43.833◦N -80.117◦W B - Scattered tress Grass
6156134 ATMOS HAMILTON 43.200◦N -79.833◦W D - Low plants Grass
6156135 ATMOS MISSISSAUGA 43.533◦N -79.650◦W 5B - Open midrise with scattered trees Grass
6156136 ATMOS NORTH YORK 43.750◦N -79.317◦W 4 - Open high-rise Gravel
6156137 ATMOS NORVAL 43.617◦N -79.833◦W D - Low plants Grass
6156138 ATMOS VAUGHAN 43.867◦N -79.533◦W 6B - Open low-rise with scattered trees Grass
6156150 AJAX COMMUNITY CNTR 43.867◦N -79.033◦W 5 - Open midrise Gravel
6156152 AJAX (PAO TAU) 43.900◦N -79.050◦W D - Low plants Grass
6156153 AJAX (VILLAGE CHRYSLER) 43.833◦N -79.033◦W 3E - Compact low-rise with bare rock Gravel
6156154 AJAX (WINTERMERE SOD) 43.900◦N -79.033◦W D - Low plants Grass
6156155 AJAX (WATER SUPPLY) 43.817◦N -79.000◦W 5 - Open midrise Stone
6156156 CALEDON EQUESTRIAN PARK 43.967◦N -79.833◦W 9C - Sparsely built with bush and scrub Grass
6156157 DUFFERIN / ST. CLAIR CIBC 43.867◦N -79.033◦W 3 - Compact low-rise Shingles
6156158 CLAREMONT (SILO FARM) 44.000◦N -79.100◦W D - Low plants Grass
6156159 TORONTO TRAP AND SKEET 44.183◦N -79.667◦W 9B - Sparsely built with scattered trees Stone/Tar
6156160 CONCORD (RYDER) 43.817◦N -79.517◦W 8 - Large low-rise Gravel
6156161 DOWNSVIEW PARK 43.750◦N -79.483◦W 8 - Large low-rise Gravel
6156162 KING CITY 43.967◦N -79.567◦W 9 - Sparsely built Grass
6156164 HERSHEY CNTR 43.633◦N -79.650◦W 5B - Open midrise with scattered trees Membrane
6156165 MARKHAM (NORTH TOYOTA) 43.817◦N -79.350◦W 8- Large low-rise Gravel
6156166 BOUSFIELD FARMS 43.483◦N -79.900◦W 9C - Sparsely built with bush and scrub Grass
6156168 TORONTO (NORTH YORK) 43.717◦N -79.467◦W 2 - Compact midrise Gravel
6156169 GENERAL MOTORS CNTR 43.897◦N -78.867◦W 2 - Compact midrise Membrane
6156170 DOWNSVIEW 43.783◦N -79.467◦W 5 - Open midrise Grass
6156171 ROYAL CANADIAN YACHT CLUB 43.633◦N -79.350◦W 5EG - Open midrise with bare rock and water Grass
6156172 SCARBOROUGH (TORONTO HUNT) 43.683◦N -79.267◦W 9D - Sparsely built with low plants Grass
6156174 STONEY CREEK CARDINAL 43.217◦N -79.750◦W 8 - Large low-rise Gravel
6156175 MATTAMY ATHLETIC CNTR 43.667◦N -79.383◦W 1 - Compact high-rise Membrane
6156177 TORONTO (HYUNDAI) 43.699◦N -79.450◦W 2 - Compact midrise Gravel
6156179 U OF T SCARBOROUGH TENNIS 43.783◦N -79.183◦W 9CE - Sparsely built with bush and bare rock Stone
6156180 MONOPOLY PROPERTY 43.850◦N -79.300◦W 5CE - Open midrise with bush and and bare rock Tar
6156181 UXBRIDGE (LEE ACRES) 44.167◦N -79.217◦W C - Bush and scrub Grass
6156182 UXBRIDGE (TARIS) 44.050◦N -79.117◦W 9 - Sparsely built Stone
6156183 YORK UNIVERSITY 43.783◦N -79.517◦W 5 - Open midrise Grass
6156184 WHITBY ABILITIES CNTR 43.867◦N -78.950◦W 6 - Open low-rise Concrete
6156186 ANGUS GLEN GOLF CLUB 43.902◦N -79.317◦W D - Low plants Grass
6156187 HAMILTON SOCCER CNTR 43.250◦N -79.833◦W 6 - Open low-rise Mulch
6157000 MONO CNTR 43.033◦N -80.017◦W C - Bush and scrub Grass/Dirt
6159123 UXBRIDGE WEST 44.100◦N -79.167◦W N/A N/A
6166400 BLAIRHAMPTON GOLF CLUB 44.996◦N -78.667◦W D - Low plants Grass
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APPENDIX B

Table B.1: Station-specific seasonal summer heat stress metric values.

STN NUMBER Tmax (◦C) Humidex (◦C) WBGT (◦C) COMFA (Wm−2)

6116200 25.2 28.1 21.4 226.6
6116201 23.9 27.7 21.5 286.2
6136285 N/A 31.0 23.4 315.7
6136290 25.6 30.1 22.5 317.3
6136300 26.4 29.9 22.6 298.5
6136303 24.5 28.7 21.5 307.2
6136305 25.4 30.1 22.3 330.4
6136308 26.7 29.8 22.4 328.8
6140942 26.1 29.4 N/A N/A
6153170 24.1 27.1 20.9 328.5
6156130 N/A 29.7 22.5 357.3
6156131 N/A 30.0 22.2 279.0
6156132 N/A 29.8 22.5 296.9
6156133 N/A 27.9 21.7 319.2
6156134 N/A 30.4 22.7 362.6
6156135 N/A 30.3 22.7 354.8
6156136 N/A 29.4 22.3 321.5
6156137 N/A 30.0 22.6 350.6
6156138 N/A 29.8 22.6 339.8
6156150 25.5 28.3 21.6 318.1
6156152 25.6 28.9 22.0 286.7
6156153 24.9 27.5 20.9 328.0
6156154 24.9 28.0 21.6 340.8
6156155 23.3 27.1 21.1 315.4
6156156 25.2 27.8 20.9 275.5
6156157 26.6 29.1 21.8 307.6
6156158 24.7 27.8 21.6 292.6
6156159 25.1 29.2 22.6 320.7
6156160 26.5 28.8 21.6 326.9
6156161 26.3 28.8 21.4 313.1
6156162 24.8 27.6 21.3 282.9
6156164 26.2 29.8 22.6 391.5
6156165 26.5 28.7 21.8 353.6
6156166 25.5 29.9 22.5 333.3
6156168 26.0 28.4 21.4 333.6
6156169 26.2 29.7 23.1 327.4
6156170 26.7 29.8 22.7 280.2
6156171 24.6 28.6 21.8 316.2
6156172 23.7 27.2 21.2 304.7
6156174 26.7 29.5 22.0 352.3
6156175 26.1 29.7 23.2 299.2
6156177 25.9 28.3 21.5 338.2
6156179 25.4 29.0 22.5 298.6
6156180 26.3 30.1 22.7 317.6
6156181 25.0 28.2 21.7 297.7
6156182 24.3 27.0 20.9 265.1
6156183 26.4 29.2 22.1 295.6
6156184 24.8 28.9 22.1 349.3
6156186 25.4 29.2 22.2 334.2
6156187 27.2 30.9 23.3 328.7
6157000 24.0 26.7 N/A N/A
6159123 24.4 27.1 N/A N/A
6166400 24.1 27.5 22.1 285.5
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APPENDIX C

Figure C.1. The EBs (red line) and corresponding EB streams (M (purple line), Rabs

(yellow line), C (blue line), E (orange line), and Lemit (green line)) for A) the men’s
bronze medal match, B) the women’s gold medal match, and C) the men’s gold medal
match.

84



Texas Tech University, Alexandria J. Herdt, August 2017

APPENDIX D

Figure D.1. The EBs (red line) and corresponding EB streams (M (purple line),
Rabs (yellow line), C (blue line), E (orange line), and Lemit (green line)) for A) the
midfielder B) the defender, and C) the goalie for the men’s bronze medal match.
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Figure D.2. The EBs (red line) and corresponding EB streams (M (purple line),
Rabs (yellow line), C (blue line), E (orange line), and Lemit (green line)) for A) the
midfielder B) the defender, and C) the goalie for the women’s gold medal match.
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Figure D.3. The EBs (red line) and corresponding EB streams (M (purple line),
Rabs (yellow line) , C (blue line), E (orange line), and Lemit (green line)) for A) the
midfielder B) the defender, and C) the goalie for the men’s gold medal match.
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