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Ensuring astronauts are adequately equipped and capable of performing necessary tasks 

is paramount to achieving mission success especially with the increasing levels of autonomy 

required for long duration spaceflights. While this may be clear and obvious, the necessary 

path to achieving such a goal is not so apparent. The spaceflight environment introduces a 

wide array of stressors that can negatively impact human capabilities and performance; 

consequently, modeling these interactions quickly becomes overwhelming due to the 

complexity and adaptivity of the human. While various models have been created to predict 

astronaut performance during spaceflight, collecting the necessary input data to validate the 

resultant output of these models remains a challenge. Fortunately, ongoing advances in widely 

available and unobtrusive wearable biosignal sensors may prove valuable in this endeavor. 

These sensors enable the opportunity to non-invasively measure and monitor a subset of crew 

physiological status with respect to performance proficiency parameters. To examine the 

potential applicability of such sensor systems, an ongoing research project is being conducted 

under the title “Using a Human Capabilities Framework to Quantify Crew Task Performance in 

Human-Robotic Systems”. The project is aimed at validating a crew performance framework 

using methods of non-invasive monitoring of the crewmember. Within the context of this 

multi-year project, the present work aims to characterize the process used for selecting and 

evaluating a suite of Non-invasive Biosignal Sensors (NiBS) while performing spaceflight-like 

tasks that could provide reliable indicators of changes relevant to performance. Specifically, 

this work presents preliminary engineering efforts to downselect sensors and develop 

anticipated test and analysis approaches. This effort is funded through the Virtual NASA 

Specialized Center of Research (VNSCOR) Human Capabilities Assessments of Autonomous 

Missions (HCAAM) project.   

I. Introduction 

onitoring and predicting astronaut performance can help improve the design of a human spacecraft before it 

launches and during operations if the modeled system can accommodate and react to the information. 

But monitoring and predicting crew performance is currently limited by several factors: 
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1) There are limited existing published models (or frameworks) for including measured values of the crewmember, 

environment, and operations into a predictive output for which the system can react1. Having such a framework 

validated would help to identify what type of data should be collected during a mission to achieve the desired 

predictive output. 

2) The existing published models for measuring crew performance impacts due to spaceflight, such as NASA’s 

Integrated Medical Model2, have focused primarily on probabilistic assessment of medical outcomes and 

consequences of the astronaut during a mission; these models are not yet directed towards understanding how the 

design of the system (habitat, robotics, or task itself) could be driving the performance changes. 

3) While there are numerous works proving the use of psychophysiological measures for real-time assessments of 

cognitive or psychological load of different tasks on operators3-6, to our knowledge none have looked at integrating 

the physiological measures as an indicator for changes to crewmember capabilities or health and status.  

4) While there is a wide range in the quality and utility of sensors available on the market, no recommended 

integrated minimum number suite of sensors could be identified that has been linked together with a method to provide 

a view of the crewmember’s overall operational state.  

Therefore, the current research is aimed at addressing these limitations in astronaut performance monitoring and 

prediction, with a focus on understanding how the task design affects the astronaut’s operational state. This objective 

will be met through a series of experiments between 2021-2023. This paper presents an initial study that was conducted 

to investigate the feasibility of a selected NiBS suite as a means of validating a modified crew-task performance 

model. The goal of this current effort is to document and present the systematic process and rationale employed to 

define a series of experimental tests to validate the crew performance framework and demonstrate how the data will 

be processed for inclusion into the model. 

To address this objective, the paper is split into three sections. First, we discuss the relevant literature that drove 

the development and modification of a previously designed crew-task performance model used as the backbone for 

defining the research methodology and setup. Second, the rationale and methodology are described for selecting and 

characterizing the experimental setup, which included identifying an appropriate NiBS suite and spaceflight-like tasks. 

And third, in building the discussed rationale, engineering data is presented to highlight findings regarding the test 

setup that must be addressed before being able to integrate the data into the crew performance model. 

II. Crew Performance Model Background 

A. Modifications to a crew performance framework  

The framework chosen for this project is derived from prior work by Fanchiang7, describing the relationship 

between the crewmember’s capabilities, the spacecraft environment, and the task operations. The link between the 

three components relies on the basic element of a crewmember’s capabilities, which is constantly changing due to the 

surrounding environment, tasks performed previously, and the crewmember’s health and status. This framework 

highlights how the measure of a crewmember’s capabilities can be used as the basic comparative metric between the 

spacecraft environment, tasks, and the crewmember’s health and status. Using this framework in this ideal way, we 

would measure as many variables as possible and track the impacts of every change to the crewmember’s performance 

 
 

Figure 1. Modified crew performance framework that was originally described in Fanchiang7. 
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on various tasks. But in compiling the list of crew capabilities, it quickly becomes obvious that the ability to conduct 

all the non-invasive data collection is not practical.  

While it is possible to measure every crewmember capability listed in previous work from Fanchiang8, many of 

the measurements would be highly invasive and take several hours, both of which would affect a crewmember’s task 

execution and generally be highly burdensome. Instead, we expanded the measures to capture this idea of a 

crewmember’s general ‘operational’ state, which includes ‘capability’ along with other physiological measures 

(defined below), which can be measured non-invasively using currently available off-the-shelf sensors.  

Crewmember operational state is composed of three elements: the crewmember’s health and status, capabilities, 

and skills and knowledge. Health and status describe the physiological measures of the crewmember such as 

anthropometrics, current state of the body such as heart rate, core body temperature, etc. Capabilities describe the 

functions that the crewmember can perform. These functions have modifiers which describe to what degree or level 

the functions can be performed. The type of capabilities that can be measured and monitored are listed in Fanchiang8. 

These functions vary from moment to moment and can also be modified by the environmental conditions such as cold 

temperatures reducing fine motor control functionality. Skills and knowledge describe what type of understanding and 

ability the crewmember has for specific types of tasks. For example, reading is a skill, and it also has modifiers in 

terms of quality or level. The relationships between capabilities and skills and knowledge are components of learning; 

capabilities are considered an inherent ability of an able human body, and skills and knowledge have to be learned 

and can atrophy without practice.  

Using this definition for operational state, we can compare the crewmember’s operational state before and after a 

task. This difference is what we define as the expected operational state change resulting from performing a particular 

task. If the subject then does that same task under a different set of circumstances, we would expect the operational 

state change to be different, thus informing us of a change in the crewmember’s capabilities. For instance, a change 

in the environmental conditions such as poor lighting or a change in the crewmember’s capability such as an injured 

arm would likely yield unique operational states compared to performance monitored under ideal environmental 

conditions. 

III. Rationale and Systematic Process for Experiment Design 

A. Task Selection Process 

To set up the experiments to validate this framework, we first needed to characterize and identify the type of tasks 

we would have subjects perform that both mimicked expected spaceflight tasks and would allow us to use existing 

sensors for collecting high quality data to analyze.  

The first step was to identify and downselect representative spaceflight tasks. We used a systematic approach by 

choosing two sources: the ISS timelines from years of 2000-20149 and the Mars Preliminary Task List Report10. Our 

rationale for using the ISS timelines was to provide an accurate and operationally relevant list of tasks that have been 

conducted inflight, while the Mars Preliminary Task List provided a futuristic look at tasks that are expected for longer 

duration missions further from Earth.  

Due to the number of ISS timelines from 2000-2014, only three years were selected for review: 2000, 2008, and 

2014. The intention is that these tasks would be representative of different ISS operational periods from the 

initialization and operations to full science operation and usage to near end-of-life maintenance and sustainment.  

Each of the tasks listed in the timeline was recorded with high level language using verbs to connotate the action 

involved with the task and the object on which the action was being performed. This was accomplished manually, and 

only unique tasks were added to the list.  

The Mars Preliminary Task List was documented with a similar process. In this case, some similar tasks were 

defined as unique because of the phase of flight or the specific group to which the task was being conducted differed 

(for example, communicating with other crewmembers versus communicating with mission control). Because the task 

list spanned a full Mars mission, the assumption was that the tasks would be symmetric across the last third of the 

mission, during Earth return. Additionally, we focused specifically on in-flight tasks and therefore, analyzed the task 

list up to Phase 4 of Mars Orbit Injection. The total number of tasks identified was 619 where 218 tasks were from the 

ISS timelines and 401 tasks were from the Mars Task List. 

With the large number of tasks to select from, we further simplified the process by splitting the task classification 

into four groups, as shown in Figure 2, and defined as Low Physical–Low Cognitive (LP-LC); Low Physical–High 

Cognitive (LP-HC); High Physical–Low Cognitive (HP-LC); High Physical–High Cognitive (HP-HC). With this 

classification, we next categorized each of the tasks from our Total Task List as to whether they demanded high or 

low physical activity and high or low cognitive activity.  
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We found that while this was 

a good starting point for 

characterizing the task types, it 

was difficult to downselect the 

tasks further without increasing 

the resolution of the task 

characterization. Specifically, 

since this was considered a 

feasibility test to determine 

whether we could identify any 

differences between tasks as 

captured by biosignal data, we 

decided to focus on tasks on the 

edges of these four quadrants 

(i.e., the highest physical 

demand, highest cognitive 

demand, and lowest physical 

demand, lowest cognitive 

demand).  

Additionally, when reviewing 

the tasks, we noted complex nuances to their ranking with regard to potential psychological demand levels of the task. 

For example, a press conference for the astronauts in space may not require much cognitive demand, but it may be 

psychologically demanding and therefore perceived as a much more demanding cognitive task. Another example 

would be a medical emergency in which the physical and cognitive demand may be low, for example to build a 

makeshift splint for a broken arm. However, the fact that you may be doing this for a friend or crewmate while they 

are in severe pain may impact your ability to do the task effectively. Therefore, we went back through the list to 

provide a ranking of the anticipated psychological demand level using values of 1 for low to 5 for high. The subjective 

ranking was performed by the authors separately and then reviewed collectively to discuss any conflicting results and 

determine rankings. 

 Once the psychological rankings were added, we combined the two task lists, removed any non-unique tasks, and 

selected tasks that were ranked on the ends of physical and cognitive scales, while being low on psychological demand. 

We were left with the following number of tasks for each of the quadrants: LP-LC (1,1): 36 tasks, LP-HC (1,5): 17 

tasks, HP-LC (5,1): 15 tasks, HP-HC (5,5): 19 tasks. 

The number of tasks were still too high to effectively measure in the lab, so we removed any experiments that we 

deemed risky for health and safety reasons or due to lack of resources. Additionally, we removed any tasks that were 

considered to be too short in duration or would be difficult to implement in the lab setting and would not result in 

sufficient biosignal data capture. An example of tasks that we removed included: “Clean fingernail”, “Drain sinus 

passageway”, and “Sleep”. Table 1 shows the final set of downselected tasks. 

We next gave this list of 38 tasks to four subject matter experts, including a former astronaut and two NASA 

employees who work or have worked with astronauts, to solicit their subjective rankings as an initial confidence check 

and to help further downselect to four optimal tasks we could replicate in the lab for each of the quadrants. With their 

inputs, along with additional removal of high psychological impact tasks, we decided on the following four 

representative tasks as a starting point for the pilot study: 1) a basic data entry task as the low physical-low cognitive 

activity, 2) a timed arithmetic test for the low physical-high cognitive task, 3) running laps for the high physical-low 

cognitive task, and 4) combined arithmetic and running for the high physical-high cognitive task.  

 
(A)                                                                (B) 

Figure 2. Classification of Task Types. A) Total tasks identified for each 

Task Type from the ISS timelines. B) Total tasks identified for each Task 

Type from the Mars Preliminary Task List Report (up to Mars Orbit 

injection) 
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B. Experiment Sensor Suite Selection Process 

Selecting a NiBS suite entailed several considerations for the project including the following: what we want to 

measure, what exists to make the measurement, and what are our constraints in procuring and using the sensor(s). 

While there are clearly many more constraints and requirements if these systems were to be flown in space as 

documented by Seyedmadani11, this project is focused on laying the foundation for the science outputs in a more 

controlled setting and will be conducting studies in NASA’s Human Exploration Research Analog (HERA) as a final 

test case. With that in mind, the constraints we had for this project are listed as follows: 

1. Operational requirements to accommodate use in HERA. Because we would be doing testing at NASA’s 

HERA site, we wanted to use hardware that could be used in their facility. This included the following 

constraints: 

a. Limited access to internet. Since the analog is meant to mimic spaceflight, there is limited 

internet access and therefore the hardware must not need real-time connection to the internet to 

work. This requirement also implies that the system should be able to store its onboard data to 

be downloaded at the end of the day or task or even at the end of the mission if possible. 

b. Minimal crew time. The lack of crew time drives requirements for the system to be easy to use, 

easy to setup, and minimal maintenance of the system such as charging or cleaning of the 

components.  

Table 1. List of downselected tasks. 

 

LP-LC LP-HC HP-LC HP-HC 

Inventory internal light 

systems (# of bulbs, light 

output, etc.) 

Perform fluid physics 

experiment 

Test Dynamometer (hand 

strength measurement) 

Egress airlock as part of EVA 

(in space suit) 

Download Data Data analysis Stow equipment Ingress airlock as part of 

EVA (in space suit) 

Measure habitat air quality 

using Gas Chromatography 

Sampler (GCS) 

Read space crew support 

system protocols 

Perform IRAD (resistive or 

weightlifting) exercise 

Fix a crewmate’s dislocated 

shoulder 

Conduct communication 

checks 

Write Conference Report Perform exercise on 

stationary bike 

Implement countermeasures 

(e.g., counseling, Software) 

Verify controls and switches 

match checklist 

Diagnose and treat sick 

crewmate 

Perform exercise on treadmill Conduct EVA (moving across 

habitat in suit) 

Monitor displays Measure pulse, respiratory 

rate and conduct chest exam 

(on self) 

Egress crew habitat (without 

spacesuit) 

Respond to spacecraft CO2 

alarm 

Monitor and control external 

video camera 

Play chess (and other games) 

with MCC personnel and 

others on Earth 

Ingress to crew habitat 

(without spacesuit) 

Respond to spacecraft general 

ECLS failure alarm 

Conduct simple physical tests 

(e.g., put pegs in pegboard) 

Plan operations (e.g., EVA, 

maintenance of external 

components) 

Don pressure suit Respond to spacecraft 

navigation alarm 

Attach and replace sleeping 

bags and/or tools 

Conduct cognitive tests Respond to spacecraft fire 

alarm 

 

Conduct and record solar, 

planetary and stellar 

observations 

Use sextant and star charts for 

navigation 

Place PHA QDM (Quick Don 

Mask) on during Emergency 

(time trials) 

 

  
Perform cardiopulmonary 

resuscitation (CPR) 
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c. Must be mobile. The crewmembers must be able to move around freely while wearing the 

sensors. Therefore, the hardware cannot be hardwired to a power outlet or to a Data Acquisition 

(DAQ) system that is not mobile. 

d. Compatible with previous systems used in HERA. If the sensor has some history of being used 

in space or in HERA, this would greatly enhance the ability to compare to previous studies, but 

this is not a driving requirement.  

2. Accessibility of the raw data. The data had to be in an accessible format or in an easily convertible format 

(.csv, .txt, .xls, .fit) for our team to do post processing and analysis.  

3. Low cost/affordability. We were limited to a small hardware budget in our grant and had to have multiple 

sets because each crewmember in the HERA mission would require their own set. Therefore, we limited 

our total sensor suite budget to a maximum of $5K. This narrowed the number of systems that could be 

feasible for our testing.   

4. Published results. The system should have some published data, results, or comparative studies against 

other systems. We wanted a proven and complete solution without having to do major verification tests. 

These considerations were combined into a trade study matrix shown in Table 2.  

Table 2. Sensor Suite selection considerations. Hardware highlighted in bold were the final selected suite. 

HR = heart rate, EDA = electrodermal activity, ST = skin temperature, BVP = blood volume pulse, Acc. = 

acceleration, IBI, = interbeat interval, fNIRS = functional Near-Infrared Sensor, ECG = Electrocardiogram, 

HbO2 = forehead oxygenated hemoglobin, HbR = forehead deoxygenated hemoglobin, BP = blood pressure. 

 

Biosignal 

Measure 

What insight does 

the measure 

provide? 

Hardware that can 

make the 

measurement? 

Low 

Cost? 
Data Format? Battery Life 

Need 

wired 

DAQ? 

EDA Stress, arousal, 

anxiety 

Empatica E4 Yes .csv 24-30 hrs No 

EEG Activation of certain 

brain regions 

Emotiv; B-Alert No; No Need EmotivPro software 

to convert to .csv; need 

AcqKnowledge to 

convert to .csv 

4 hrs; 8 hrs No 

Pupil 

Dilation 

Stress, arousal Tobii Eye Tracking 

Glasses 

No Need Tobii Pro Lab to 

convert to .csv 

8-9.5 hrs No 

HRV Workload Empatica E4; BIOPAC; 

Biosignalsplux 

Yes; No; 

Yes 

.csv; need BioPac 

AcqKnowledge to 

convert to .csv;.txt 

24-30 hrs; 24 

hrs; 16 hrs 

No; Yes; 

Local 

DAQ 

ECG Cardiovascular 

health 

BIOPAC; 

Biosignalsplux; Apple 

Watch 

No; Yes; 

Yes 

Need BioPac 

AcqKnowledge to 

convert to .csv; .txt; .xml 

24 hrs; 16 

hrs;18 hrs 

Yes; 

Local 

DAQ; 

No 

HR Complement to 

Workload 

Empatica E4; 

BIOPAC; Polar Chest 

Strap; Apple Watch 

No; Yes; 

Yes; Yes 

Need AcqKnowledge to 

convert to .csv; .csv; .xml 

24 hrs; ~400 

hrs; 18 hrs 

Yes; No; 

No; No 

Blood O2 

Level 

Absorbed O2 in the 

blood stream 

Pulse Oximeter; Apple 

Watch 

Yes; Yes Only real-time data; .xml 20-160 hrs 

(depend on 

brand); 18 hrs 

No; No 

BVP Volume moving 

through veins 

Empatica E4 Yes .csv 24-30 hrs No 

EMG Activity level of 

muscles 

BIOPAC (BN-EMG2); 

Moxy 

No; Yes Need BioPac 

AcqKnowledge to 

convert to .csv; .csv 

24 hrs; 3 hrs Yes 

ST Stress, arousal Empatica E4 Yes .csv 24-30 hrs No 

Acc. Activity and 

movement 

Empatica E4; Phillips 

Actiwatch; Apple Watch 

Yes; Yes; 

Yes 

.csv; need Actiware to 

convert to .csv; .xml 

24-30 hrs; 30 

days; 18 hrs 

No; No; 

No 

fNIRS Brain activity (via 

HbO2 and HbR) 

Biosignalsplux Yes .txt 16 hrs Local 

DAQ 

BP Stress or physical 

activity 

Blood Pressure Cuff Yes .csv or real-time (depend 

on brand) 

Depend on 

brand 

Depend 

on brand 
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The suite of sensors listed here is by no means a comprehensive list of all sensors that exist on the market; rather 

it is based on several desirable characteristics critical to the design of our study. Foremost, the products listed have 

been favorably reported on by other researchers in this field in the literature and/or at conferences. Additionally, the 

manufacturers of the highlighted sensor systems provide sufficient information on their website or in their publications 

to explain system functionality.  The remaining trade space included size, portability, commercial availability, and 

ease of use in an operational setting. With the limitation of cost, we selected the suite of hardware that would provide 

the most measures for the least amount of hardware. 

 The downselected sensors are highlighted in bold font in Table 2. The chosen sensors measure a range of 

parameters most notably consisting of electrodermal activity (EDA) using an Empatica E4 wristband, heart rate (HR) 

using a Polar H10 chest strap, changes in oxygenated hemoglobin and deoxygenated hemoglobin in the frontal lobe 

using a portable fNIRS sensor from Biosignalsplux, and an electrocardiogram (ECG) sensor from Biosignalsplux.  

C. Design of Experimental Test Session 

1. Test Session 

We designed a two-hour test session to include the four selected 

tasks to be performed at the University of Colorado Boulder’s 

Bioastronautics Lab. The session included an introduction during 

which the subjects reviewed and signed a consent form, put sensors on, 

and performed control tasks (i.e., sat for three minutes, stood in place 

for three minutes, and ran in the lab for three minutes). Next, we had 

them fill out a questionnaire about their background and demographics 

along with their physical fitness level and food and water intake for the 

day. We took their seated blood pressure using a blood pressure cuff 

after each change of activity. 

After completing the questionnaire, blood pressure was measured, 

and then they began the prescribed series of task types starting with the 

data entry task in which the subject was asked to copy files on a 

computer from one folder location to another and then rename the file 

folder. The subject was provided a paper handout of the name of the 

original files and their corresponding new name and asked to do this 

task as many times as possible until the test operator told them to stop.  

The data download task was followed by running laps back and 

forth along one length of the ~29-foot lab. The subject was asked to 

run the laps as fast as they could until the test operator told them to 

stop after 5 minutes. The subject was not told the duration of the task, 

as to not allow the subject to pace themselves but rather expend as 

much energy as quickly as they could to get their heart rate up.  

Following the running task, the subject was asked to sit down and 

do as many double to single digit arithmetic problems as fast and as accurately as possible. The arithmetic problems 

were presented on a webpage using a laptop. The subject had to type in their answer using the keyboard for each 

question.  

After the arithmetic task, the subject then did a combined lap running and arithmetic task. This involved the subject 

starting the arithmetic program on the computer, then running two laps and stopping to answer an arithmetic problem, 

then the next problem appears and the subject runs two more laps. The subject was again asked to do this as quickly 

and accurately as possible. 

Once the subjects finished these tasks, they were asked to fill out a final questionnaire about their test experience, 

including how they felt about the sensors, clarity of instructions, and if they had any additional feedback to help 

improve our test protocol for future subjects.  

Each task was to be performed for five minutes with a five-minute break in between. This duration was selected 

in response to various articles12,13 showing that this is sufficient to measure physiological responses to high cognitive 

or physical loads, while minimizing test fatigue or boredom. After each task type, we had the subject take their blood 

pressure. For the running tasks, if the subject’s heart rate surpassed 190 bpm, we’d asked them to stop prematurely if 

it hadn’t been five minutes yet, and if the subject felt the need to stop on their own, they were allowed to end the task. 

Figure 4 shows the timeline of the test session. We had a total of six participants performing the test session. These 

four task types were performed with subjects donning a suite of wearable sensors, as shown in Figure 3. 

 
 

Figure 3. Sensors worn and used 

during testing.  

Polar H10 
(HR) (chest strap 

undershirt)

Biosignalsplux, 
fNIRS & ECG 

(HbO2, HbR, HRV,)

Omniron BP 
Cuff (BP)

Empatica, E4  
(HR, EDA, ST, 
BVP, Acc., IBI)
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2.  Independent Variables 

The parameters of interest for this work are two layered. The first layer consists of the basic biosignal data of the 

test subject throughout the session from the wearable sensors and their performance on the tasks. The second layer of 

data is the derived function for relating the performance on the task the individual’s operational state change. For each 

of the task types being performed, specific measures of performance were tracked as shown in Table 3. 

 

IV. Preliminary Results 

To tune the test sequence, each pilot scenario was performed with slight permutations in reaction to observations 

and feedback from previous tests. While all subjects completed all four task types, no sequence was precisely repeated. 

The purpose of these varied test scenarios was three-fold: 1) to guide decisions regarding the test session setup 2) to 

guide insights into the data collection process and 3) to guide decisions regarding the type of post processing that 

might be applicable.   

A. Insights on Test Setup 

This preliminary work led to several important realizations for our test setup. Specifically, we were able to identify 

hardware and software issues that could be fixed to improve the data quality and maximize our ability to compare 

between the biosignals and task types. 

Hardware issues that arose included difficulty with strapping the Biosignalsplux DAQ in a consistent and safe 

place around the subject as they ran laps. If the subject had pockets, we would put it in their pocket, or have it clipped 

to the elastic band on their pants or shorts. But this placement was not conducive to good running form with subject 

feedback suggesting they worried it might fall out or off. Additionally, the wires from the ECG and fNIRS also 

deterred the subject from attempting a normal running gait as the wires often would swing across their face or dangle 

by their hand. A better harnessing system to tightly contain the wiring and the DAQ would serve to minimize the 

subject’s ability to get tangled with the wiring and accommodate their gait to protect the hardware.  

 
Figure 4. Timeline of test session. 

15 MIN 15 MIN5 MIN SEGMENTS10 MIN

Data 

Entry

Run Math Run & 

Math

RestRest Rest Rest Rest WrapUpSetUp Control

Table 3. List of performance measures for each task type collected.  

 

Task 1 (LP-LC) TASK 2 (LP-HC) TASK 3 (HP-LC) TASK 4 (HP-HC) 

Data Entry Task Math Task Run Task Run & Math Task 

•Number of Files 

Transferred 

•Number of Errors 

•Total Time Spent on 

Task 

•Accelerometer Profile 

•Energy (derived from 

Accelerometer) 

•Peak Acceleration 

•Min Acceleration 

•Number of Questions 

Answered 

•Number of Errors 

•% Correct 

•Total Time Spent on 

Task 

•Accelerometer Profile 

•Energy (derived from 

Accelerometer) 

•Peak Acceleration 

•Min Acceleration 

•Number of Laps 

•Pace per Lap 

•Total Time Spent on 

Task 

•Accelerometer Profile 

•Energy (derived from 

Accelerometer) 

•Peak Acceleration 

•Min Acceleration 

•Number of Laps 

•Pace per Lap 

•Number of Questions Answered 

•Number of Errors 

•% Correct 

•Total Time Spent on Task 

•Accelerometer Profile 

•Energy (derived from 

Accelerometer) 

•Peak Acceleration 

•Min Acceleration 
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In terms of the length of the task, completing all four task types 

with breaks in between took about two hours for each participant. 

This was concerning as we were worried about an order effect 

where fatigue could become a confounding effect on the later tasks. 

Additionally, the placement of the forehead fNIRS becomes 

uncomfortable and irritating after about an hour so we consequently 

decided to reduce the number of task types to test going forward. 

The fNIRS forehead sensor was deemed very uncomfortable by 

many of the subjects, to the point that they had to re-adjust the band 

during the testing. The sensor design includes two LEDs that 

protrude about 5 millimeters from the base. These LEDS are then 

pressed into the forehead with an elastic band around the head. The 

tightness of the band does seem to affect the data outputs and will 

be further investigated prior to deploying a full data collection 

regime. 

Another consideration for future improvements for the test 

setup includes ensuring the subject wears appropriate attire for 

physical activity. The testing was often done when the subject had 

a break in between classes and therefore the subject would be 

wearing casual attire rather than active wear. This was an issue for 

some of the subjects who seemed more constrained in their running 

gait.  

Also due to the size of the lab space, each lap was only 29 feet 

in length and to run fast, the subject had to abruptly stop on one end 

and quickly spin around to run to the other side. This abrupt 

stopping was not conducive to good running form and further 

exacerbated motion artifact. An ideal setting may have been 

outdoors on a track or on a treadmill.  

B. Insights on Data Collection Process  

Collecting the correct data and collecting it accurately and 

consistently was also something we reviewed from this pilot test. 

To verify the correct data was being collected, we compared the 

biosignal data ranges to existing literature regarding expected 

values. For example, baseline healthy heart rate should be in the range of 60-100 bpm, while highly physical tasks 

should result in an increased heart rate usually around 128 bpm to 170 bpm, but no more than 220 bpm minus the age 

of the subject14.  

 To increase accuracy and consistency of the data collection there were several updates to the protocol that had to 

be made. First, the placement of the sensors could be better standardized. With the forehead fNIRS, location of the 

sensor is important as specific parts of the frontal lobe will be activated for certain tasks15.  

Second, the data showed that the running task created a high degree of motion, producing large amounts of spurious 

data in the ECG plots. This large increase in spurious results would likely make it impossible to extract data on heart 

rate variability and led to our decision to switch the running task to a stationary biking task for later tests. Third, we 

realized the task types could be considered more on a continuous spectrum, where even the rest in between tasks could 

be considered as a low physical low cognitive task.   

The testing sequence is susceptible to a variety of confounding factors which may have dependency on ordering 

of tasks within the sequence. For example, long periods between tasks, repetition of certain tasks, or insertion of 

differing tasks between repeated tasks may alter the subject’s performance despite the task being otherwise equivalent. 

 

C. Insights on Data Analysis 

From this preliminary engineering data, several insights could be gleaned on how to maximize comparative power 

between measures of the biosignals, the task types, and individual differences.  

Looking at the results, it became apparent that there could be a variety of approaches to sub-sampling the data in 

time. Due to the differing task lengths, some data streams would only be available for three minutes while others 

 
                                     (A) 

 
                                     (B) 

 

Figure 5. Comparison of a sample ECG 

signal (A) during the running task with 

large motion artifacts vs (B) seated data 

entry task. 
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would be available for five minutes. To account for such variations, the analysis would need to be tailored to each task 

type, adding a new layer of complexity to developing generalizable predictions across varied task types. The analysis 

must also determine optimal window sizes and window location for comparing biosignal data. For derived data such 

as HRV, the window size of the data being analyzed affects the mean values. Additionally, the location at which the 

signal is measured is important as well. In the case of heart rate, some subjects did not see an immediate rise in their 

heart rate during the running tasks as they were slow to start the task (i.e., started with a slow jog before getting into 

a more steady and faster rhythm) or there might be an association to the individual’s fitness level, in which the higher 

the fitness level, the less immediately impactful the running task is to their heart rate. The average HR would look 

different if the measure was over the entire five-minute window as compared to just a 30 second window at the end 

of the task.  

Beside considering what window size and locations for the data analysis, other considerations that appeared 

included how to compare the cohort of subjects and extract individual differences. Such an approach would need to 

isolate individual differences or at least identify grouping of subjects for analysis. One grouping may involve fitness 

levels or another may select subjects with similar skill level in arithmetic. Other groupings could be based on 

physiological considerations such as height or body mass index (BMI) or even baseline biosignal measures.  

Another realization after looking at this initial data was that the five-minute break in-between sessions may not be 

sufficient for ‘resetting’ the subject to a baseline state, especially after a high physical activity. Ordering of the tasks 

may also impact the overall performance as the baseline of the subject gets adapted with respect to the previous task. 

The variation in task time added a further wrinkle that direct comparison of different task types becomes clouded. 

This is because the number of cycles within the given task is not consistent, thereby changing the relative strength of 

the analysis statistics. While such a finding could be considered obvious, it presents an interesting analysis point as 

real tasks will occur over widely varying time durations. This again points back to the generalizability concern noted 

previously. 

Another big challenge in the analysis stems from time offset between each sensor. The various sensors are not part 

of a common platform and therefore it is not possible to start each system simultaneously. This meant that, for 

example, the Polar chest strap ran on an internal clock which could be referenced to a starting time differently than 

the Biosignalsplux. Fortunately, these hardware devices can be set to output time in standard UTC. So even though 

the starting point and relative timing between the devices might be offset, the time could be shifted in post-processing 

to be consistent. This does however add additional analysis steps and is not easily automated. Ultimately, the pilot 

testing illuminated a range of both procedure and analysis hurdles that were then factored into the subsequent testing 

protocols. It is noted that an updated test protocol for the upcoming testing regime was submitted and approved under 

the University of Colorado Boulder’s IRB under the number 20-0003. 

 

V. Discussion and Conclusion 

With this initial work, we have developed a standard method to generate different representative mission relevant 

task protocols, procured a suite of biosignal sensors, analyzed early pilot data, and developed data analysis protocols 

for integrating the data products into our modified version of a crew performance model. The insights garnered from 

the pilot testing were used to develop a new protocol to allow for conducting ‘at home’ remote research in light of the 

lab access restrictions incurred during the ongoing COVID-19 pandemic. We demonstrated feasibility of our approach 

and are establishing the next phase of this project where we will begin a larger data collection effort and analyze the 

data for assessing predictive patterns that can be applied toward ultimately validating our task design framework. 

This process highlights that the conceptual model proposed by Fanchiang7 requires continual updates which are 

dependent on both the type of data that can be non-invasively captured to describe changes to crewmember capabilities 

and on what sensors exist to feasibly make the measurements. While the tasks presented are clearly simplistic 

 
 

Figure 6. Flow of data processing and analysis. 
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representations compared to actual spaceflight operations, this initial pilot study allowed us to systematically look at 

the tangible measurements and determine the relationship between the biosignals and expected performance on a task. 

One potential application of this method is as a proxy for measuring the quality of a particular task design. Such a 

methodology is specifically relevant for scenarios in which humans will rely significantly on automation and robotic 

interfaces in performing various tasks. While models have been developed to use physiological measures as a proxy 

for cognitive or physical load of a particular task, few have used the measures to evaluate and adjust the task using 

knowledge of the incoming operational state of the human. 

Our approach specifically frames the design of the task around the dynamic changes to the crewmember’s 

operational state. This viewpoint adds a layer of operational relevancy to the current state of human-robot interactions 

where instead of just asking “how much cognitive load does this task require?”, this framework can start to ask more 

dynamic questions such as “if this human is in a particular operational state are they able to perform the upcoming 

task”, and/or “what type of performance could be expected on this task give the incoming operational state of the 

human”.  

This work has helped drive improvements for future human subject testing regimes that will be conducted from 

2021-2023, and it has provided useful insight for the type of data analysis and processes needed for full operational 

scenarios in NASA’s HERA missions. 
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