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INTRODUCTION

It 1. tho purpolo of this pnp-r to consider
tho loci of fnnetinnl ot thrco and ronr vurilblon,
and to -uggout . goonotric buokground for the
.1ntorprctation or naxana nnd mininn of nnch functions.

In the Anoricnn lathgnntionl Monthly, (May, 1945

and March, 1949), Dr. R. S. Underwsod hag introduced
the subject of %xtonded Analyt;c Geometry, and
considered some kpplicationlt'fln addition to thia
printed material, Dr. Underwood hag proposed other
prinbiplo: and bﬁcorcnu, not yet published, and it is
upon these materials that the follewing thesis is

based.



Gﬁtl!lﬂ 1

Basie Prinociples and Methods

For funotions of three variables EU==f{x,y,:[].
the axes X, J, and 5 lie on a commen plane and pass
through a ocommoen origin, as indicated in Figure 1.
The U~axis passes through the origin and is perpen-
dicular to the three (x,Yy,z)-axes plane, with its
positive direction upward.
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hE e raxes, or XY system, is superimposed,
W Wy find L.and Y in terms of x, ¥, and 3. We
find thak,, . . .
X=x ,,oq‘n«i:oo«ir.y coe Qoo+- s cos 120

Y=x cﬂp Oa-ry_ li,.nl(;-l;—. g sin 1200 . (1)
mplifying,
8x +y~-s5=02X.

;qugtién; (zj;achﬁhn basic oqﬁniiona of the 3-axes
ﬁlnnd..' | o B
A peint on the 3-axes plane has an unlimited
number of sets of coerdinates. For example, the point
(1,2,-1) shown in Pigure 1, is also designated by the

trios (0,3,~2) and (~3,6,-5), among others. We will
now show how these additional coordinates may be found.
{From (2) it follows that if (a,b,c) is a

particular set of coordinates of a fixed point (X,Y),
and 1f (x,y,z) is another set of coordinates of the
same point, then

28 ¢+ b~ ¢c=2x+ Yy~ % (3)
and

b+ ec=y+ z. (4)



Rimidhting $'und y successively frem (3) and (4),

we find thNt F=a4 D - x an® g=0¢ - a + x. From this
¥é ‘8e¢ that the mumbers

(R E YD =%, 6 = a+x) - ©r(s)

may be called Ghd*g!gorlliuid ooordznato-;anbbrcviatddz
a. o;) of thq puint‘(n,b,o). Por ;xgmplo; ull;
o;o;ai;nt-i of thobbfht (2;-;;4) ;ro 1pclud§d 1n'tho
set (x,1-x,2+x), with x arbitmary.

S '!hrgWut ‘she paper we shall let x=¢ 1n‘9rdor to
dict&egntnh*1t4noro eaally frem X. When working with

functions of three variables, we shall let 83=Y,

| Vs
since this simplifies the algebra considerably.

By definition, the locus of the equation

U=f(x,y,8) | (6)
is the totality of points having coordinates (x,¥y,s,U)
which aitisty (8).

The locus of (8), when it exists, 1is normally a
s0l1id such as, for example, a filled paraboloid, but
exceptionally it may be & surface or some other
degenerate form. The s0lld may fill all apace, as in
the case of most linear functions; but when maxima or
minima exist, the locus usually has & definite top or



o' pt the oquuun of the bounding surfaee of (6)
ﬁh m- 3= r(x,m. we may use the G. C, of (x.r)
frow the basic equations (2). By eliminating s snd y
nﬂustﬂr from (8) we find the G. C. of (X,Y) to be

(x, !+x~x.!-x+a). e (7)
V3

llcphcing X0yt m\fé by 8,.the . C. of (X,Y) are

(%y 8 +x- 6 8- x4+ t). o T )
Replace X, ¥, and % in (6) by ¢, 8+ X - %, and
$-X+¢ rnpoou'nly. and (6) bcconn

U=£(t, S+ X~ t, 8~ X+ t)=288X38) (9)
The locus of (9) h‘ the same as (6) bdut now U may be
oonsidered nvtmiy ot‘ aurfncn with t as the parameter.
For each valus of s_. U 1s a surface. 3et U, =0 and
solve; thus obtaining t, and hence x, ¥y, and gz in terms
of X and S. Substitute this value of t in (9) and

designate this extremal value of U by Z, getting

z = P(X,8), or | (10)
z= F(X,Y). (11)
VE

The Z-axis in (11) coincides with the U-axis in
(6) since the XY plsne is superimposod over the x y =
plane in standard position. Equation (10) can, of course,
be changed to the form U=h(x, y, 2) by replacing

2, X, and S by U, 2x +§I - £ and + %, respsctively.



4 ’ ?lmt tﬁ.{i" T R S
1f‘(3) hl! . bounding upper or lewer surface,

:;0 :qpitton Qr this aurf.oa in terms of roct-ngular
c.ordinntcc (x.!;z) -ly bc found by th. rollowing
ggrkigg‘;gl_s
- (a) Boplnco x.l. and : in (6) by t,3+ X -t, and
) 8 - x + t. rolpcctivuly.
(b) s-t nt-.o and -olvb tor t in terms of X nnd S.
(o) 3ubat1tuto thi- vtluo of ¢ 1n (6), roplacing

U by z, und. aftor ninpllfying. a by‘!.

&
The prinoiplo 1nyolvod is 111ustrntcd below in the

 following qxnaplo.

| ths .
.  Example: ¢ oint,
U=1-x -y = 3s°. (12)

3tep (a): The substitutions (8) in (12) yleld
H—l_-t ~(8+X=-t) —(8-x+t)
3tep (b): t= 2 |
.p( ) 1- 2 2 (13)
t ¢ls %=1 - X' - 13

The bouﬁding surface of (12) is the paraboloid
of revolution (13) as illustrated in Figure 3.

A convenisnt way to investigate whether (13) 1is
the top or bottom of the solid (12), 1s by applying the
“pegthole” method which is explained and illustrated
below.

The G. C. of P(1,0,0) by (5) are (£, = ¢, ¢t - 1),



ggﬁtgﬂg'§§¢ﬂ!l§poggg U over this point is determined
by the equation |

B=1 - € ~(Let] =(te1)’= =3t + 4t - 1. (14)
By elementary caloulus, we find the maximum value of
Y over § to be J,/a. |
. FProm (14) thcro are values of t, and hence
ecoerdinates of !. wm.ch Yield all real values of U less
than 1/3. conuquanuy. (12) 1s a "filled" paraboloid
ef revolution, and (13) 1s the upper bounding surfacs.
From Figure 3, we ses that U has & maximum value ef 1
nhovo“tho origin.

By definition, the locus of (8) in?&ogonoratc, ir
it is a surface, curve, point, or non-existent (hhginary).
The following {:w-o theorems have been proposed by Dr.

R. 3. Underwood.
‘Tho:orom‘_l_... "When

@VYEU,( + U, | (15)
the locus of U=1(x,y,z) is degenerate."

Theorem 2. "If the locus of U=1f(x,y,z) is a
surface, then IIIyEUx + Uz'"

As an exampls, consider the squation
U=x + Iz+_§2+xg-xz-1_. (16)
Here (15) ho,lgs, s: that the 1ocuszof (16) is degenerats.

Stop (a) of the working rule yields u=x> (t drops out),



and the lecus of (16) is the parabolie eylindcr'
2=X". (17)
The liéua'dt”g‘obinéidcs with that ef 2, as
111ultratod in Pigure ‘¢. The minimum ef U, which 1s
sere, is aleng the Y-axis. .!rml (7) we find the G. C.
of (0,Y) te be L
Ry ==+ sl o ~ ‘uaz
Mow if the firsts egquation im (2) 1- uubtractcd
from the second, we will have B
Y=s+X~-¢. (19)

’ 1}"- :

Substituting (19) in (18), and letting X=0, we find
tho G. C. of (0,!) to be (x,s - ax.z), with 2 and x
urbitrnry, which will yleld the minimum for U in (16).

For functions of four variables [U=f(x,y,s,u)],
the ixu X»Y»%, and u lie on a commen plane and pass
through a cemmon or}gin, as indicated in Figure 2.
The U-axis passes through the origin and is perpen~
dicular to tha four (x,y,z._u)-uos plane, with its
positive direction upward.

If the 2-axes, or XY system, is superimposed,
we find that (20)
X=X coa,0° + y cos 45" + z cos 90  + u cos 135

Y=x 8in 0° + y e8n 45° + z ain 90° + u sin 135,



Simplifying,
VE (X=x)=y = u
VE (Y=8)= ¥+ u. (21)

Equations (21) are the basic equations of the
4-axes plesne.

Letting x=t%t and y=r, and eliminating u in (21),
we find that the 4. C. of (X,Y) in terms of the
parameters t and p are

(¢, r, X+ Y-t =2 r, r+i2 t =V2 X). (22)



Substvettig (22) ia ’ ~ |
§=2(x,y/8,%), : o (23)
we got
U=gleit Y. (84)
Bet W, =0
U,= 0, o (28)

Apdredy getting the necessary conditions for an
extremun of U. Selve (25) simultaneously for % and r
in 8‘!‘; o X and Y. Replacing these values of § and
r in (24), we get the equation vl= Z=P(X,Y) of the
dounding surfacs.

R ¢4 (23) has a bounding upper or lower surfadce,
thﬁ'.qnation of thisg surface in torms'or raot-ngular
coordinates (X,Y,Z) may be found by the following
werking rules

(a) Replece x,¥,s, and u in (23) by ¢,r, X+ Y - ¢t ~-V2 »,

and r +V2 t -V2 X, respectively.
(b) Set Ut==0 and U,=0, and solve the simultaneeus
}Qqnatlona for r and £ in terma of X and Y.
(e) Subétituto these values of r and t in (24) and

designate this extremal valus of U thus obtained by 2,
getting |

Z2=P (X,Y).
The principle involved is illustrated below in the

following example.
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- Examples

U=x* 4 ¢+ s + ul, (26)
3%ep (a): |

U=t + 2 +(X+ Y=t =8 r)" + (r+/@ ¢t -3 X)*

step (V)3 ,

t-1X and r=/E X+ ¥

7 B

Step (o) 3= éz-h %z. (87)

*The lecus of (28) 1s the f111¢d paraboloid of
revolution as {llustrated in Pigure 6. |
| Dr. R. 3. Underwood has 'propoud the folloiing
theoren: o |
Theorem 3. "When
U, = U, - U,VB=UIE - U, (28)
the loscus of U=¢(x,y,s5,u) 1is degenerate, while if the
locus is a surface, squations (28) hold."
As an example, consider the equation
U=x% ~ g2 +V2 xy -2 xu =V2 yz - 2yu -V2 su., (20)
Here (28) holds, and we find the locus of (29) to be
the hypertolie paraboloid
z=X> = Y5, (30)
which is illustrated in Figure 6.



CHAPTER 11

Cfwge ol

| uu gr Puhotions of Thres Variables

Linear Functions

We now seek the normal locus eof

U=ax + by + ox, b # a+ o, (31)
aubn;i‘t;utiuﬁ(s) in (31) and setting Uy=0, & will
drop out, which indicates that the extremal value of U
is unrutrichd. and hcncs, U will fi1ll all space.

Next consider the locus of

U=ax + by + (b—a)z. (32)
Equations (15) held, and when (8) is substituted in
(32), & will drep out. Attqr simplifying (32) we get

U=%Z2=aX <+ (2b-n)\%_. (33)

Hence, the locus of (32) is the plane (33).

Second _D__g_greo FPunctions

First we will consider the various normal loci of
the rorﬁ |

U= aiz + by” + oz°. (34)

After applying the three steps of the working
rule, and simplifying, we find the equation of the



48

bounding surface of (34) te be

zpa(Mh) X.wi- % (b-c) XY + % (ab-ncﬂbo) !

RE T fa+bre) (38)
e b ghn,gaqp§lggagnt (D) of the right side of
_pauatisn (35) (» -, M) is equal te

BP=« 16 abs (a¢db+s) = . (38)

whers A 1s the coefficient of X, B is the coefficient
of XY, and § 1s the ceefficient of ) &
'Consider a special case of (34) where a=1, b=1,
and ¢=-3; that 1s |
v=x"+ y*» 3s°. (37)
~ Here D<0. By substituting a=1, b=1, and
= «3 in (35), we obtain the eqmuon of the bounding
surface of (37) te be e

‘z=2x® - 875 xy 4 14 Y. (38)
3 | ~ |

The locus of (37) is illustrated in Figure 7. By
applying the posthole method, we find (38) to be the
upper surface; that is, the parabeloid is filled on
the outside. Hence, (37) has no maximum or minimum
value, a’a is also evident by inapection of (37).

Next consider a special case of (34) where a=1,
b= ~1l, and ¢==1; that 1s

U=x" - y* - 2% | (39)

Here D> 0. By substituting a=1, b=-1, and

6=«1 in (35) we obtain the equation of the bounding
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surro.co of {39) te m |
= 2);...4..3!” R | - (40)
The lecus of uo) 18 i1llustrated in Figure 8. The
poathoio-ngﬁhnd‘uhqwn us that the hyperbolic parabeleid
is noi&d below nnd*dnpty above the "saddle." Mence,
U of (39) has no nnxiiﬁn or minimum wvalue.
Now, consider the special case of (34) where
a= 0, =2, and o—-'i; that 1s |
. U=gy' -3t (41)
" Here D= 0. Substitute a=0, b=2, and o=-1
in (35) and we obtain the equatien of the bounding
 surface of (41) to be

3

The lecus of (41) is 1llustrated in Figure 8. The

UL R/ RAEVAA
it} : (42)

pesthols method ghows the locus of (42) to be the lower
surface of (41). Thus the locus of (41) is the para-
belic cylinder filled on the outside and empty on the
inside, and from figura 9, we see that (41) has ne
maximum or minimwa value. | |

Now consider the wvarious normal loci of the form

U= axy + bxz <+ cys. (43)

After applying the three steps of the working rule
and simplifying, we find-the equation of the bounding

surface of (43) to be
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[

v

,>.a,v.?_u=L!“', ,.,21 x* +(3 [(asb) (--Mzcﬂ__n

o 4(a=b+o)

SRR S ~ S BN ,
T LR + 40 (ambee]] TR |
4(a-beo) | (44)

- In this case, the digcriminant
p= 64 abe (a=bee). ~ (48)
!hc pquibh ‘normal leci of (43) correspond te
thogse of (34) for corresponding values of D.
Consider the special case of (43) where a=1,
b=1, and ¢==1; that is
U=xy + x3 = ¥s. m; . (46)
B_-ro DZQ: By aubntitﬁﬂng a=1l, b=1, and
o= «1 in (44) ,."cho equation of the beunding surface
of (46) 1s o |
A Z=2V3 XY - 2 Y’ . (47)
=y T

Cross nctiona#ot'( 47) are illustrated in Figure
10. Tho posthole m?ghod gshows us that (46) is the
h;borbolie paraboloid shown in Figure 10, and that it
is 20114 above the saddle and empty below the saddle.
Hence, U of (46) has no maximum or minimum value.

The general form for a second degree function
of three variables is

U=ax>+ by + oz’ + dxy + exsz + fys. (48)
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!ho 1dd1tton of firlt degree terms would not
innranln thn.gnngrllity of the results, since these
eould b¢ olilinntcd by oonploting the squares and
trtnlllting thn axc-, nor would the addition of a
eonutlnt 1neron-c tho goaorulity; it would merely
lhirt thc lecus ef (48) above or below the XoYs 58
pl:nn. . |

la notice thut (34) and (43) are special cases
of (48), Rquations (34) and (43) were considered
first, bDecause their beunding surface equations (35)
and (44) gave us & direcs approach te imvestigate all
pessible nermal 10ci’'by considering all pessible |
values of sheir discriminants.

Applying the three steps of the werking rule to
(48), indainylirying. we find the equation of the
bounding surface of (48) te be

g=[4a(bso-£) - (a-e) )X’ (49)
4(a+b+c-d+o-f)

-3 [8(;b-ac+bo+ed) - 2(4* - &%) - 4f(ase)]xY
4(a+béc-dve-r)

\
+ 3 [4a(b+c+f)+8b(20+c)-4d( 2c+f)-(d+e)*+4f(e-2)] Y®
| 4(a+b+e-d+e-1)

Bquation (48) will yield aimilisr types of normal
loci as equations (34) and (43) for corresponding

values of their diascriminants, which 1is to be expected
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by compargmg (38), (44) and (49). |
09§§é§ar the ljiqialvonlo of (48) where

a=b=gvF@za=f7)} that &8

U= a“[-}- ):,.z -+ l,"-*-» Xy + X% ‘.-0- ¥s. (50)

@ aubatitnsq the roapcot;vc values of a,b,0,d,e,

and g}tl (49) and the squation of the bounding surface
af (B0) 1s R ‘ )
=X TS X +5 X BT

a su % R

Rade'S
Ty

'"hlxlﬁﬂl'Of:(sﬂylliiillﬁitrltod in Figure 11. The
posthole methed shows that (51) is the lower surface
of {(50). Hence, the locus of (50)’1: the filled
‘slliptic paraboloid and U his a minimum value of O
ever the origin. .

‘Next consider the special cass of (48) where
a=b=0=1,"and d=e=f=-1; that is

U= x* y"-F g5 - Xy~ X% - ¥zZ. | 4(/52)
and £ in (49) and the squation of the bounding surface
of (52) is

z2=(V3x - Y)?
' 4 i (53)

The locus of (52), as shown in Pigure 12, is the
‘fillod parabolic cylinder touching the XY-plane along
the line Y=YV3X. PFrom (2), the equation of this line 1is

g=x. The minimum of U, which 13 gzero, is along this line
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shen x=z=a and U=(y-a) with y-a; that is, when
x= y-z—a. T
h An 1ntaruting loom if found when the denominater
ot (35). (44). or (49) 18 oqual te gero. In this case,
we oauot obhin the bennding uurfaco by direct sub-
| stitutlnn of coctficicntu in the mentioned equations,
because we obtain a function of the form Z=ﬂ_§}_).
which has ne tinito value. This would indicate that
2=U would r111 all space whenever P(X,Y) # 0. TUpon
uvoatignting uvu-ul npwiﬁc functions of this rurm.
we £ind that the lecus of each 1s all of space except
a pertion of a plans. An example of such a function
is given below.
- Example; |
=xy + 2x3 + TS, | (64)
Applying the first step of the working rule to
(64), we obtain _ | |
U=(38+X)t + (8 - X)=( 3 Y+ X)t 4+ (Y - X°) (58)
. S % 1 ; 5
When 38 4+ X 7 0, the locus of U evidently fills all
space. When 33 4 X=0, or in the plsane
Y= -y3X, | (66)
: o 2 L
U=8 =~ X .
Substitute (56) in (55), and let U=2Z, and we obtain
z= - 8Y". (67)
1



dence, for peints en the plane Y= -vg X, U will
have values: ‘alding ‘the parabola (57). Thus the locus
of (54) ineluﬂu the parabola zZ= -8 Y 1in the phno
Y= -Vg x. plul u11 aptco outside t!snt larne. The
I‘ienl of (N) 1s illuatrntod 1n Fignrc 13.

" he cdefficients of special cases of (48) ———
-utuua in (49) will yum an tquation of the
bounding surface in the fm
* ‘—ﬁxi_+ le’! + ¢, '!.. o |  (s88)
The dincrininmt of the right aide of (68) .‘u ]

B( - “10 W (59)

Prom (58) we may sumsrize the peasible normal

locl of ‘specinl cases of {48), which are as follews:

Oase 13 If in (58), D;< 0, the locus will be a

pambéloid,. which may be filled either on the inside
ir en the outside. If the paraboloid is filled on
the inside, the original function of the form (48)
will have a maximum or minimum value which can be

obtained from the ahapg of the bounding surface that
is known. If flilled on the outaide, the original

function has no maximum or minimum value.

Case 2: 1If in (58), D;5 0, the locus will be a
hyperboliec paradboloid, which 1s either filled above
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or belew the saddle. In this case the original func-
tion iﬁ‘nﬁnot have & maximm ur'ninﬁnu-,inlun.

Case 38i" If in (58), D;=0, the locus will be a
parnhdiiq leihdai; wllose cross section is a parabola
with axis parallel to the Z-axis. It may be filled
either on the inside or the outside. If it is filled
on the 1nlid¢%btho ofigiqg; t@nqtion will have a maximum
or minimum value whish bnn,bo obtained from iﬁo shape
- of the bognn%ng surface. If filled on the outside, the
'ogiginnl function has no maximum or minimum.

Cage 43 If the denominator of (49) is zero, we
then ;ﬁilyzo the loeus by the method used for (64).

For this type of special case, we find that the ©“*
original function fills all spsce, except a aurvoﬂin
a plane. |

It 1s. obvious that (49) is a valuable equation in
determining the loci of the great many possible special
cases of (48),'and shows the unigque contridbution of \
Dr. R. 8. Underwood's "Extended Analytic Geometry ef
N Variables."

To conelude this chapter on loci of three variables,
we shall digcuas a few special cases of the form
v = £(x,y,2).

First, we will consider

v=d -3 -y - 5. (60)
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nf!l¢?6quntion of the bounding surface of (60) is

f.\llld—‘ “ b‘ * '
X+Y + az‘— (61)
2T SR %
!ho 1ooun or (60) %a the fillcd ollipaoid of

wire o st oo kA s el e

revolution as illustrated in Pigure 14.
We find that the equation of the bounding surface

of
Ve +y +5 +1 . (e2)
is " |
2 2 7
32 - X ~-Y=3 (83)
B -] 2

The locus of (62) is the tillid hyperboloeid of
2 sheets as illustrated in Figure 185.
Hext consider the equation
V=x"+y+ 1. (64)
We find that the equation of the bounding
surface of (64) 1is

X +Y - 3z=o0. (65)
5

The locus of (64) is the filled cone as 1llustrated
in Figurc 18.

Pinally, consider the equation

U=xX"+y + ¢ -l (66)

We find that the equation of the bounding surface
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of (68) is = W
2 % z
X Y -3% =35. -
¥°°3

The loous of (66) is the filled hyperbeleid of
one sheet as iumtnhd in Pigure 17.

Ehlﬁﬁi

ayus Tion
AR
A}

b s .
BRI X



CHAPTER III

Leci ‘of Fumctions of Four Variables

Heretofore, we have congidered general types
of functions, and now we will tske up special cases
of functions of four variables.

Pirgt oonaid;r the equation

U=x"-+ yz' -5 - u. | (68)

After applying the three ltipl of the working
rule for functions of four wvariables (page 9), we
£ind the equation of the boundihg surface of (68)
to be C |

2Z=X + 2XY - Y . | (69)

It is found by iﬁpliing (22) to specific
ceordinates, that the locus of (68) is the aolid,
whose top is the hyperbolic paraboloid (69). o

8imilarly, the locus of :

U=x2+ yu (70)
is found to be the solid, whose bottom is the
hyperbolic paraboloid

4z=-x7' -+ ZXY+‘!Z. (71)
and the locus of

U=x" +y +z+1u (72)
1s found to be the so0lid, whose bottom is the plane



X +Y | (73)

(—3) f‘z: (‘%—’

Finally, consider the equatien

= x4 yz' 4% -u. (74)

Setting ut..o, we obtlin

x=Y, - | - " (76)
and U =0, will yield

r=V8 Y. (76)

42 |

Suhltitixing (76) and (76) in (74), we got

Z=Y . (77)

- For points not on the plane (75), U 4is unres-
t?ic‘od. Por points on the plane (78), the paradela
(77) 1s the botton;'. Hence, the loocus of (74) is the
parabela (77) in the ﬁlano (75), plus all peints
inside the 'parabela » plus all np.gc/o outside the plane
(756). The locus of (74) is illustrated in Pigure 18.

-
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.

: U=1-x,-y -5 (solid)
(0,0,1) z=1 - 2X - 2Y" (upper surface
— 3 3 of the solid)
!
Au.
N V%, 0.0)
. >

Figure

3.

Filled Paraboloid
of Revolution



U= x7’+f+_z_b+xy-xz-z§ (surface)
4 4 |

U= Z=XL (same surface)

(Degenerate case)

28

Parabolic Cylinder

Figure 4.
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U=x ~+ y” <+ zz +"az (s0lid)

. 4
Z=X + Y (lower surface of the solid)
1 .

2

Filled Paraboloid
Y of Revolution

Figure 5.



U=x" -2 +2xy -V2xu -yZyz - 2yu -V2zu (surface)
U=z2=X - Y (same surface)

(Degenerate case)

AZ
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Hyperbolic
Paraboloid

Figure 6.
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U=x"+ y" - 32" (s0l1d) ‘

1 . ’ : |
Z=2X - 8Y3 XY+ 14 Y (upper surface of the solid)
3 3 ' |

Eliiptic paraboloid (filled on the outside)

Figure ¥.
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2
U=x" - Yy - z* (so0lid)

2 2
2=2X - 2Y (upper surface of the solid)

/L

Hyperbolic paraboloid (filled below the saddls)

Figure 8.



Y
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(solid)
(lower surface of the solid)

Z

ARBRERRR R

A
A
A
A
e
e
e
A
1

parabolic cylinder (filled on the outside)

Figure 9.
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U=xy + xz - yz (solid)

2
Z=2V3 XY - 2Y (lower surface Y
3 3 of the so0lid)

~
>~

\4
>

Hyperbolic paraboloid
(filled above the saddle)

Figure 10.
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U=x"+35 + 2 + Xy + xz 4+ yz (solid)

2 Z
Z=1X +/3 XY+ 5 Y (lower surface of the solid)

3 3 8
/[
N\

/ [
: |
yd 4
f
|
r__A
. !
/
. /
/
A’
/
/
T >><
- \
P \
z \
Vy

Filled elliptic paraboloid

Figure 11.






