Browsing by Author "Lovett, Jacob (TTUHSC)"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Ginger Polyphenols Reverse Molecular Signature of Amygdala Neuroimmune Signaling and Modulate Microbiome in Male Rats with Neuropathic Pain: Evidence for Microbiota–Gut–Brain Axis(2024) Shen, Chwan Li (TTUHSC); Santos, Julianna Maria (TTUHSC); Elmassry, Moamen M.; Bhakta, Viren (TTU); Driver, Zarek (TTU); Ji, Guangchen (TTUHSC); Yakhnitsa, Vadim (TTUHSC); Kiritoshi, Takaki (TTUHSC); Lovett, Jacob (TTUHSC); Hamood, Abdul Naji (TTUHSC); Sang, Shengmin; Neugebauer, Volker (TTUHSC)Emerging evidence shows that the gut microbiota plays an important role in neuropathic pain (NP) via the gut–brain axis. Male rats were divided into sham, spinal nerve ligation (SNL), SNL + 200 mg GEG/kg BW (GEG200), and SNL + 600 mg GEG/kg BW (GEG600) for 5 weeks. The dosages of 200 and 600 mg GEG/kg BW for rats correspond to 45 g and 135 g raw ginger for human daily consumption, respectively. Both GEG groups mitigated SNL-induced NP behavior. GEG-supplemented animals had a decreased abundance of Rikenella, Muribaculaceae, Clostridia UCG-014, Mucispirillum schaedleri, RF39, Acetatifactor, and Clostridia UCG-009, while they had an increased abundance of Flavonifactor, Hungatella, Anaerofustis stercorihominis, and Clostridium innocuum group. Relative to sham rats, Fos and Gadd45g genes were upregulated, while Igf1, Ccl2, Hadc2, Rtn4rl1, Nfkb2, Gpr84, Pik3cg, and Abcc8 genes were downregulated in SNL rats. Compared to the SNL group, the GEG200 group and GEG600 group had increases/decreases in 16 (10/6) genes and 11 (1/10) genes, respectively. GEG downregulated Fos and Gadd45g genes and upregulated Hdac2 genes in the amygdala. In summary, GEG alleviates NP by modulating the gut microbiome and reversing a molecular neuroimmune signature.Item Peanut Shell Extract Improves Mitochondrial Function in db/db Mice via Suppression of Oxidative Stress and Inflammation(2024) Deshmukh, Hemalata (TTUHSC); Santos, Julianna M. (TTUHSC); Bender, Matthew (TTUHSC); Dufour, Jannette M. (TTUHSC); Lovett, Jacob (TTUHSC); Shen, Chwan Li (TTUHSC)Accumulating evidence shows a strong correlation between type 2 diabetes mellitus, mitochondrial dysfunction, and oxidative stress. We evaluated the effects of dietary peanut shell extract (PSE) supplementation on mitochondrial function and antioxidative stress/inflammation markers in diabetic mice. Fourteen db/db mice were randomly assigned to a diabetic group (DM in AIN-93G diet) and a PSE group (1% wt/wt PSE in AIN-93G diet) for 5 weeks. Six C57BL/6J mice were fed with an AIN-93G diet for 5 weeks (control group). Gene and protein expression in the liver, brain, and white adipose tissue (WAT) were determined using qRT-PCR and Immunoblot, respectively. Compared to the control group, the DM group had (i) increased gene and protein expression levels of DRP1 (fission), PINK1 (mitophagy), and TNFα (inflammation) and (ii) decreased gene and protein expression levels of MFN1, MFN2, OPA1 (fusion), TFAM, PGC-1α (biogenesis), NRF2 (antioxidative stress) and IBA1 (microglial activation) in the liver, brain, and WAT of db/db mice. Supplementation of PSE into the diet restored the DM-induced changes in the gene and protein expression of DRP1, PINK1, TNFα, MFN1, MFN2, OPA1, TFAM, PGC-1α, NRF2, and IBA1 in the liver, brain, and WAT of db/db mice. This study demonstrates that PSE supplementation improved mitochondrial function in the brain, liver, and WAT of db/db mice, in part due to suppression of oxidative stress and inflammation.