Browsing by Author "Noyes, Noelle R."
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Characterization of the Microbial Resistome in Conventional and “Raised Without Antibiotics” Beef and Dairy Production Systems(2019) Rovira, Pablo; McAllister, Tim; Lakin, Steven M.; Cook, Shaun R.; Doster, Enrique; Noyes, Noelle R.; Weinroth, Maggie D.; Yang, Xiang; Parker, Jennifer K.; Boucher, Christina; Booker, Calvin W.; Woerner, Dale R. (TTU); Belk, Keith E.; Morley, Paul S.Metagenomic investigations have the potential to provide unprecedented insights into microbial ecologies, such as those relating to antimicrobial resistance (AMR). We characterized the microbial resistome in livestock operations raising cattle conventionally (CONV) or without antibiotic exposures (RWA) using shotgun metagenomics. Samples of feces, wastewater from catchment basins, and soil where wastewater was applied were collected from CONV and RWA feedlot and dairy farms. After DNA extraction and sequencing, shotgun metagenomic reads were aligned to reference databases for identification of bacteria (Kraken) and antibiotic resistance genes (ARGs) accessions (MEGARes). Differences in microbial resistomes were found across farms with different production practices (CONV vs. RWA), types of cattle (beef vs. dairy), and types of sample (feces vs. wastewater vs. soil). Feces had the greatest number of ARGs per sample (mean = 118 and 79 in CONV and RWA, respectively), with tetracycline efflux pumps, macrolide phosphotransferases, and aminoglycoside nucleotidyltransferases mechanisms of resistance more abundant in CONV than in RWA feces. Tetracycline and macrolide–lincosamide–streptogramin classes of resistance were more abundant in feedlot cattle than in dairy cow feces, whereas the β-lactam class was more abundant in dairy cow feces. Lack of congruence between ARGs and microbial communities (procrustes analysis) suggested that other factors (e.g., location of farms, cattle source, management practices, diet, horizontal ARGs transfer, and co-selection of resistance), in addition to antimicrobial use, could have impacted resistome profiles. For that reason, we could not establish a cause–effect relationship between antimicrobial use and AMR, although ARGs in feces and effluents were associated with drug classes used to treat animals according to farms’ records (tetracyclines and macrolides in feedlots, β-lactams in dairies), whereas ARGs in soil were dominated by multidrug resistance. Characterization of the “resistance potential” of animal-derived and environmental samples is the first step toward incorporating metagenomic approaches into AMR surveillance in agricultural systems. Further research is needed to assess the public-health risk associated with different microbial resistomes.Item Effects of ceftiofur and chlortetracycline on the resistomes of feedlot cattle(2018) Weinroth, Margaret D.; Scott, H. Morgan; Norby, Bo; Loneragan, Guy H. (TTU); Noyes, Noelle R.; Rovira, Pablo; Doster, Enrique; Yang, Xiang; Woerner, Dale R.; Morley, Paul S.; Belk, Keith E.Treatment of food-producing animals with antimicrobial drugs (AMD) is controversial because of concerns regarding promotion of antimicrobial resistance (AMR). To investigate this concern, resistance genes in metagenomic bovine fecal samples during a clinical trial were analyzed to assess the impacts of treatment on beef feedlot cattle resistomes. Four groups of cattle were exposed, using a 2-by-2 factorial design, to different regimens of antimicrobial treatment. Injections of ceftiofur crystalline- free acid (a third-generation cephalosporin) were used to treat all cattle in treatment pens or only a single animal, and either chlortetracycline was included in the feed of all cattle in a pen or the feed was untreated. On days 0 and 26, respectively, pre- and posttrial fecal samples were collected, and resistance genes were characterized using shotgun metagenomics. Treatment with ceftiofur was not associated with changes to β-lactam resistance genes. However, cattle fed chlortetracycline had a significant increase in relative abundance of tetracycline resistance genes. There was also an increase of an AMR class not administered during the study, which is a possible indicator of coselection of resistance genes. Samples analyzed in this study had previously been evaluated by culture characterization (Escherichia coli and Salmonella) and quantitative PCR (qPCR) of metagenomic fecal DNA, which allowed comparison of results with this study. In the majority of samples, genes that were selectively enriched through culture and qPCR were not identified through shotgun metagenomic sequencing in this study, suggesting that changes previously documented did not reflect changes affecting the majority of bacterial genetic elements found in the predominant fecal resistome.Item Evaluation of Contamination in Milk Samples Pooled From Independently Collected Quarters Within a Laboratory Setting(2022) Dean, Chris J.; Peña-Mosca, Felipe; Ray, Tui; Heins, Bradley J.; Machado, Vinicius S. (TTU); Pinedo, Pablo J.; Caixeta, Luciano S.; Noyes, Noelle R.The primary objective of this observational study was to evaluate the prevalence of contamination from independently collected quarter-level milk samples pooled in a laboratory and subjected to bacterial culture. To address this objective, weekly quarter-level milk samples were collected longitudinally from a cohort of 503 primiparous cows from five organic dairy farms during the first 5 weeks after calving. Individual quarter milk samples were pooled in a laboratory using aseptic technique (“lab-pooled”) and subjected to bacterial culture. In the sample set of 2,006 lab-pooled milk samples, 207 (10.3%) were classified as contaminated using a standard definition (i.e., growth of three or more distinct microorganisms). Subsequent culturing of corresponding quarter-level milk samples revealed that many of the contaminated lab-pooled sample results (i.e., 46.7%) were the result of intramammary infections with different pathogens across the quarters, rather than actual contamination within any single quarter (i.e., “true contamination”). The odds of true contamination were lower when the lab-pooled sample exhibited growth of three microorganisms compared to more than 3 microorganisms. Our findings suggest that pooling of quarter samples within a laboratory setting may yield lower rates of contamination compared to those previously reported from samples composited on-farm, but that current cut-offs to define contamination may need to be evaluated for use with lab-pooled samples. Further investigation of use of lab-pooled samples may be warranted to reduce costs while still providing useful scientific insight.