Browsing by Author "Shen, Chwan Li (TTUHSC)"
Now showing 1 - 12 of 12
- Results Per Page
- Sort Options
Item Actions of annatto-extracted tocotrienol supplementation on obese postmenopausal women: Study protocol for a double-blinded, placebo-controlled, randomised trial(2020) Aryaie, Amir (TTUHSC); Tinsley, Grant (TTU); Lee, Jaehoon (TTU); Watkins, Bruce A.; Moore, Lane (TTU); Alhaj-Saleh, Adel (TTUHSC); Shankar, Kartik; Wood, Sarah R. (TTUHSC); Wang, Rui (TTUHSC); Shen, Chwan Li (TTUHSC)Introduction Obesity is a major health concern in postmenopausal women, and chronic low-grade inflammation contributes to the development of obesity. Cellular studies and high-fat-diet-induced obese mouse model mimicking obesity show the antiobesity effect of annatto-extracted tocotrienols (TT) with antioxidant capability. We aim to assess the safety and efficacy of TT consumption for lipid-related parameters in obese postmenopausal women. Methods and analysis Eligible obese postmenopausal women will be randomly assigned to placebo group (430 mg olive oil) and TT group (DeltaGold Tocotrienol 70%) for 24 weeks. In the present study, the primary outcome is total/regional fat mass and visceral adipose tissue. The secondary outcomes include lipid profile in serum, mRNA expression of fatty acid synthase and carnitine palmitoyltransferase 1A in fat tissue, oxylipins and endocannabinoids in plasma and adipose tissue, abundance and composition of intestinal microbiome in faeces, high-sensitivity C-reactive protein (hs-CRP) in serum and leptin in serum. Every participant will be evaluated at 0 (prior to starting intervention) and 24 weeks of intervention, except for serum lipid profile and hs-CRP at 0, 12 and 24 weeks. â € Intent-to-treat' principle is employed for data analysis. Hierarchical linear modelling is used to estimate the effects of dietary TT supplementation while properly accounting for dependency of data and identified covariates. To our knowledge, this is the first randomised, placebo-controlled, double-blinded study to determine dietary TT supplementation on an obese population. If successful, this study will guide the future efficacy TT interventions and TT can be implemented as an alternative for obese population in antiobesity management. Ethics and dissemination This study has been approved by the Bioethics Committee of the Texas Tech University Health Sciences Center, Lubbock. An informed consent form will be signed by a participant before enrolling in the study. The results from this trial will be actively disseminated through academic conference presentation and peer-reviewed journals. Trial registration number NCT03705845.Item Annatto-extracted tocotrienols improve glucose homeostasis and bone properties in high-fat diet-induced type 2 diabetic mice by decreasing the inflammatory response(2018) Shen, Chwan Li (TTUHSC); Kaur, Gurvinder (TTUHSC); Wanders, Desiree; Sharma, Shaligram; Tomison, Michael D. (TTUHSC); Ramalingam, Latha (TTU); Chung, Eunhee; Moustaid-Moussa, Naima (TTU); Mo, Huanbiao; Dufour, Jannette M. (TTUHSC)Diabetes is a risk factor for osteoporosis. Annatto-extracted tocotrienols (TT) have proven benefits in preserving bone matrix. Here, we evaluated the effects of dietary TT on glucose homeostasis, bone properties, and liver pro-inflammatory mRNA expression in high-fat diet (HFD)-induced type 2 diabetic (T2DM) mice. 58 male C57BL/6 J mice were divided into 5 groups: low-fat diet (LFD), HFD, HFD + 400 mgTT/kg diet (T400), HFD + 1600 mgTT/kg diet (T1600), and HFD + 200 mg metformin/kg (Met) for 14 weeks. Relative to the HFD group, both TT-supplemented groups (1) improved glucose homeostasis by lowering the area under the curve for both glucose tolerance and insulin tolerance tests, (2) increased serum procollagen I intact N-terminal propeptide (bone formation) level, trabecular bone volume/total volume, trabecular number, connectivity density, and cortical thickness, (3) decreased collagen type 1 cross-linked C-telopeptide (bone resorption) levels, trabecular separation, and structure model index, and (4) suppressed liver mRNA levels of inflammation markers including IL-2, IL-23, IFN-γ, MCP-1, TNF-α, ITGAX and F4/80. There were no differences in glucose homeostasis and liver mRNA expression among T400, T1600, and Met. The order of osteo-protective effects was LFD ≥T1600 ≥T400 = Met >HFD. Collectively, these data suggest that TT exerts osteo-protective effects in T2DM mice by regulating glucose homeostasis and suppressing inflammation.Item Effect of Dietary Geranylgeraniol and Green Tea Polyphenols on Glucose Homeostasis, Bone Turnover Biomarkers, and Bone Microstructure in Obese Mice(2023) Shen, Chwan Li (TTUHSC); Dufour, Jannette M. (TTUHSC); Miranda, Jonathan M. (TTUHSC); Kaur, Gurvinder (TTUHSC); Chung, Eunhee; Ramalingam, Latha (TTU); Moustaid-Moussa, Naima (TTU); Cao, Jay J.Previously, we demonstrated that the administration of either geranylgeraniol (GGOH) or green tea polyphenols (GTP) improved bone health. This study examined the combined effects of GGOH and GTP on glucose homeostasis in addition to bone remodeling in obese mice. We hypothesized that GGOH and GTP would have an additive or synergistic effect on improving glucose homeostasis and bone remodeling possibly in part via suppression of proinflammatory cytokines. Forty-eight male C57BL/6J mice were assigned to a high-fat diet (control), HFD + 400 mg GGOH/kg diet (GG), HFD + 0.5% GTP water (TP), or HFD + GGOH + GTP (GGTP) diet for 14 weeks. Results demonstrated that GTP supplementation improved glucose tolerance in obese mice. Neither GGOH nor GTP affected pancreas insulin or bone formation procollagen type I intact N-terminal, bone volume at the lumbar vertebrae, or bone parameters at the trabecular bone and cortical bone of the femur. There was an interactive effect for serum bone resorption collagen type 1 cross-linked C-telopeptide concentrations, resulting in no-GGOH and no-GTP groups having the highest values. GGOH increased trabecular number and decreased trabecular separation at the lumbar vertebrae. GTP increased trabecular thickness at lumbar vertebrae. The GG group produced the greatest connectivity density and the lowest structure model index. Only GTP, not GGOH, decreased adipokines concentrations (resistin, leptin, monocyte chemoattractant protein-1, and interleukin-6). In an obese male mouse model, individual GGOH and GTP supplementation improved glucose homeostasis, serum CTX, and trabecular microstructure of LV-4. However, the combined GGOH and GTP supplementation compromises such osteoprotective effects on serum CTX and trabecular bone of obese mice.Item Ginger Polyphenols Reverse Molecular Signature of Amygdala Neuroimmune Signaling and Modulate Microbiome in Male Rats with Neuropathic Pain: Evidence for Microbiota–Gut–Brain Axis(2024) Shen, Chwan Li (TTUHSC); Santos, Julianna Maria (TTUHSC); Elmassry, Moamen M.; Bhakta, Viren (TTU); Driver, Zarek (TTU); Ji, Guangchen (TTUHSC); Yakhnitsa, Vadim (TTUHSC); Kiritoshi, Takaki (TTUHSC); Lovett, Jacob (TTUHSC); Hamood, Abdul Naji (TTUHSC); Sang, Shengmin; Neugebauer, Volker (TTUHSC)Emerging evidence shows that the gut microbiota plays an important role in neuropathic pain (NP) via the gut–brain axis. Male rats were divided into sham, spinal nerve ligation (SNL), SNL + 200 mg GEG/kg BW (GEG200), and SNL + 600 mg GEG/kg BW (GEG600) for 5 weeks. The dosages of 200 and 600 mg GEG/kg BW for rats correspond to 45 g and 135 g raw ginger for human daily consumption, respectively. Both GEG groups mitigated SNL-induced NP behavior. GEG-supplemented animals had a decreased abundance of Rikenella, Muribaculaceae, Clostridia UCG-014, Mucispirillum schaedleri, RF39, Acetatifactor, and Clostridia UCG-009, while they had an increased abundance of Flavonifactor, Hungatella, Anaerofustis stercorihominis, and Clostridium innocuum group. Relative to sham rats, Fos and Gadd45g genes were upregulated, while Igf1, Ccl2, Hadc2, Rtn4rl1, Nfkb2, Gpr84, Pik3cg, and Abcc8 genes were downregulated in SNL rats. Compared to the SNL group, the GEG200 group and GEG600 group had increases/decreases in 16 (10/6) genes and 11 (1/10) genes, respectively. GEG downregulated Fos and Gadd45g genes and upregulated Hdac2 genes in the amygdala. In summary, GEG alleviates NP by modulating the gut microbiome and reversing a molecular neuroimmune signature.Item Ginger Supplementation Attenuated Mitochondrial Fusion and Improved Skeletal Muscle Size in Type 2 Diabetic Rats(2024) Appell, Casey R. (TTU); Jiwan, Nigel C. (TTU); Wang, Rui (TTUHSC); Shen, Chwan Li (TTUHSC); Luk, Hui Ying (TTUHSC)BACKGROUND/AIM: Oxidative stress, regulated by SOD2 and mitochondrial dynamics, contributes to muscle atrophy in diabetes. Ginger root extract (GRE) reduces oxidative stress. However, its effect on oxidative stress, mitochondrial dynamics, and muscle atrophy is not known in the diabetic muscle. This study examined the effect of GRE on intramuscular oxidative stress, mitochondrial dynamics, and muscle size in diabetic rats. MATERIALS AND METHODS: Twenty-six male Sprague-Dawley rats were randomly divided into control diet (CON; n=10), high-fat diet with one dose of 35 mg/kg streptozotocin (HFD; n=9), and high-fat diet with one dose of 35 mg/kg streptozotocin and 0.75% w/w GRE (GRE; n=7) fed for seven weeks. Subsequently, the muscle was analyzed for cross-sectional area (CSA), H2O2 concentration, and DRP-1, MFN2, Parkin, PINK1, SOD2 mRNA. Additionally, the protein levels of SOD2, DRP-1, DRP-1ser616, LC3AB, MFN2, OPA1, Parkin, and PINK1 were analyzed. CSA, H2O2 concentration, and gene and protein expression levels were analyzed using a one-way ANOVA. Correlations among intramuscular H2O2, CSA, and SOD2 protein were assessed using Pearson's bivariate correlation test. RESULTS: In the soleus, the GRE group had a greater CSA and lower intramuscular H2O2 concentration compared to the HFD group. Compared to the HFD group, the GRE group had higher SOD2 and DRP-1 mRNA levels and lower MFN2 and total OPA1 protein levels. H2O2 concentration was negatively correlated with CSA and positively correlated with SOD2. CONCLUSION: GRE attenuated intramuscular H2O2, mitochondrial fusion, and muscle size loss. These findings suggest that GRE supplementation in diabetic rats reduces oxidative stress, which may contribute to muscle size preservation.Item Green tea polyphenols reduce body weight in rats by modulating obesity-related genes(2012) Lu, Chuanwen (TTU); Zhu, Wenbin (TTU); Shen, Chwan Li (TTUHSC); Gao, Weimin (TTUHSC)Beneficial effects of green tea polyphenols (GTP) against obesity have been reported, however, the mechanism of this protection is not clear. Therefore, the objective of this study was to identify GTP-targeted genes in obesity using the high-fat-diet-induced obese rat model. A total of three groups (n = 12/group) of Sprague Dawley (SD) female rats were tested, including the control group (rats fed with low-fat diet), the HF group (rats fed with high-fat diet), and the HF+GTP group (rats fed with high-fat diet and GTP in drinking water). The HF group increased body weight as compared to the control group. Supplementation of GTP in the drinking water in the HF+GTP group reduced body weight as compared to the HF group. RNA from liver samples was extracted for gene expression analysis. A total of eighty-four genes related to obesity were analyzed using PCR array. Compared to the rats in the control group, the rats in the HF group had the expression levels of 12 genes with significant changes, including 3 orexigenic genes (Agrp, Ghrl, and Nr3c1); 7 anorectic genes (Apoa4, Cntf, Ghr, IL-1β, Ins1, Lepr, and Sort); and 2 genes that relate to energy expenditure (Adcyap1r1 and Adrb1). Intriguingly, the HF+GTP group restored the expression levels of these genes in the high-fat-induced obese rats. The protein expression levels of IL-1β and IL-6 in the serum samples from the control, HF, and HF+GTP groups confirmed the results of gene expression. Furthermore, the protein expression levels of superoxide dismutase-1 (SOD1) and catechol-O-methyltransferase (COMT) also showed GTP-regulated protective changes in this obese rat model. Collectively, this study revealed the beneficial effects of GTP on body weight via regulating obesity-related genes, anti-inflammation, anti-oxidant capacity, and estrogen-related actions in high-fat-induced obese rats. © 2012 Lu et al.Item Green tea polyphenols supplementation and Tai Chi exercise for postmenopausal osteopenic women: Safety and quality of life report(2010) Shen, Chwan Li (TTUHSC); Chyu, Ming Chien (TTUHSC); Pence, Barbara C. (TTUHSC); Yeh, James K.; Zhang, Yan (TTUHSC); Felton, Carol K. (TTUHSC); Doctolero, Susan (TTUHSC); Wang, Jia ShengBackground: Evidence suggests that both green tea polyphenols (GTP) and Tai Chi (TC) exercise may benefit bone health in osteopenic women. However, their safety in this population has never been systematically investigated. In particular, there have been hepatotoxicity concerns related to green tea extract. This study was to evaluate the safety of 24 weeks of GTP supplementation combined with TC exercise in postmenopausal osteopenic women, along with effects on quality of life in this population.Methods: 171 postmenopausal women with osteopenia were randomly assigned to 4 treatment arms for 24 weeks: (1) Placebo (500 mg starch/day), (2) GTP (500 mg GTP/day), (3) Placebo + TC (placebo plus TC training at 60 min/session, 3 sessions/week), and (4) GTP + TC (GTP plus TC training). Safety was examined by assessing liver enzymes (aspartate aminotransferase, alanine aminotransferase), alkaline phosphatase, and total bilirubin at baseline and every 4 weeks. Kidney function (urea nitrogen and creatinine), calcium, and inorganic phosphorus were also assessed at the same times. Qualify of life using SF-36 questionnaire was evaluated at baseline, 12, and 24 weeks. A mixed model of repeated measures ANOVA was applied for analysis.Results: 150 subjects completed the study (12% attrition rate). The compliance rates for study agents and TC exercise were 89% and 83%, respectively. Neither GTP supplementation nor TC exercise affected liver or kidney function parameters throughout the study. No adverse event due to study treatment was reported by the participants. TC exercise significantly improved the scores for role-emotional and mental health of subjects, while no effect on quality of life was observed due to GTP supplementation.Conclusions: GTP at a dose of 500 mg/day and/or TC exercise at 3 hr/week for 24 weeks appear to be safe in postmenopausal osteopenic women, particularly in terms of liver and kidney functions. TC exercise for 24 weeks (3 hr/wk) significantly improved quality of life in terms of role-emotional and mental health in these subjects. © 2010 Shen et al; licensee BioMed Central Ltd.Item Healthcare engineering defined: A white paper(2015) Chyu, Ming Chien (TTU); Austin, Tony; Calisir, Fethi; Chanjaplammootil, Samuel (TTUHSC); Davis, Mark J.; Favela, Jesus; Gan, Heng; Gefen, Amit; Haddas, Ram; Hahn-Goldberg, Shoshana; Hornero, Roberto; Huang, Yu Li; Jensen, Oystein; Jiang, Zhongwei; Katsanis, J. S.; Lee, Jeong A.; Lewis, Gladius; Lovell, Nigel H.; Luebbers, Heinz Theo; Morales, George G. (TTUHSC); Matis, Timothy (TTU); Matthews, Judith T.; Mazur, Lukasz; Ng, Eddie Yin Kwee; Oommen, K. J.; Ormand, Kevin; Rohde, Tarald; Morillo, Daniel Sanchez; Sanz-Calcedo, Justo Garcia; Sawan, Mohamad; Shen, Chwan Li (TTUHSC); Shieh, Jiann Shing; Su, Chao Ton; Sun, Lilly; Sun, Mingui; Sun, Yi; Tewolde, Senay N.; Williams, Eric A.; Yan, Chongjun; Zhang, Jiajie; Zhang, Yuan TingEngineering has been playing an important role in serving and advancing healthcare. The term "Healthcare Engineering" has been used by professional societies, universities, scientific authors, and the healthcare industry for decades. However, the definition of "Healthcare Engineering" remains ambiguous. The purpose of this position paper is to present a definition of Healthcare Engineering as an academic discipline, an area of research, a field of specialty, and a profession. Healthcare Engineering is defined in terms of what it is, who performs it, where it is performed, and how it is performed, including its purpose, scope, topics, synergy, education/training, contributions, and prospects.Item Peanut Shell Extract Improves Mitochondrial Function in db/db Mice via Suppression of Oxidative Stress and Inflammation(2024) Deshmukh, Hemalata (TTUHSC); Santos, Julianna M. (TTUHSC); Bender, Matthew (TTUHSC); Dufour, Jannette M. (TTUHSC); Lovett, Jacob (TTUHSC); Shen, Chwan Li (TTUHSC)Accumulating evidence shows a strong correlation between type 2 diabetes mellitus, mitochondrial dysfunction, and oxidative stress. We evaluated the effects of dietary peanut shell extract (PSE) supplementation on mitochondrial function and antioxidative stress/inflammation markers in diabetic mice. Fourteen db/db mice were randomly assigned to a diabetic group (DM in AIN-93G diet) and a PSE group (1% wt/wt PSE in AIN-93G diet) for 5 weeks. Six C57BL/6J mice were fed with an AIN-93G diet for 5 weeks (control group). Gene and protein expression in the liver, brain, and white adipose tissue (WAT) were determined using qRT-PCR and Immunoblot, respectively. Compared to the control group, the DM group had (i) increased gene and protein expression levels of DRP1 (fission), PINK1 (mitophagy), and TNFα (inflammation) and (ii) decreased gene and protein expression levels of MFN1, MFN2, OPA1 (fusion), TFAM, PGC-1α (biogenesis), NRF2 (antioxidative stress) and IBA1 (microglial activation) in the liver, brain, and WAT of db/db mice. Supplementation of PSE into the diet restored the DM-induced changes in the gene and protein expression of DRP1, PINK1, TNFα, MFN1, MFN2, OPA1, TFAM, PGC-1α, NRF2, and IBA1 in the liver, brain, and WAT of db/db mice. This study demonstrates that PSE supplementation improved mitochondrial function in the brain, liver, and WAT of db/db mice, in part due to suppression of oxidative stress and inflammation.Item Safety and efficacy of tocotrienol supplementation for bone health in postmenopausal women: Protocol for a dose-response double-blinded placebo-controlled randomised trial(2016) Shen, Chwan Li (TTUHSC); Mo, Huanbiao; Yang, Shengping (TTUHSC); Wang, Shu (TTU); Felton, Carol K. (TTUHSC); Tomison, Michael D. (TTUHSC); Soelaiman, Ima NirwanaIntroduction: Osteoporosis is a major health concern in postmenopausal women, and oxidative stress contributes to the development of bone loss. Cellular studies and ovariectomised rat model mimicking bone loss in postmenopausal women show the boneprotective effect of tocotrienols (TTs) with antioxidant capability. We aim to access the safety and efficacy of TT consumption for bone health in postmenopausal women. Methods and analysis: In this 12-week randomised double-blinded placebo-controlled trial for the effects of dietary TT supplementation in postmenopausal women, postmenopausal women aged 45 years and older with at least 1 year after menopause and bone mineral density T-score at the spine and/or hip 2.5 or more below the reference values will be randomly assigned to 3 daily supplements: (1) placebo group receiving 860 mg olive oil, (2) low TT group receiving 430 mg of 70% pure TTs (containing 300 mg TT) and (3) high TT group receiving 860 mg of 70% pure TTs (600 mg TT). The primary outcome measure will be urinary N-Terminal telopeptide. The secondary outcome measures will be serum bone-specific alkaline phosphatase, receptor activator of nuclear factor-?B ligand, osteoprotegerin, urinary 8-hydroxy-2'-deoxyguanosine and quality of life. At 0, 6 and 12 weeks, the following will be assessed: (1) primary and secondary outcome measures; (2) serum TT and tocopherol concentrations; (3) physical activity and food frequency questionnaires. Liver function will be monitored every 6 weeks for safety. 'Intent-To-Treat' principle will be employed for data analysis. A model of repeated measurements with random effect error terms will be applied. Analysis of covariance, ?2 analysis and regression will be used for comparisons. Ethics and dissemination: This study was approved by the Bioethics Committee of the Texas Tech University Health Sciences Center. The findings of this trial will be submitted to a peer-reviewed journal in the areas of bone or nutrition and international conferences. Trial registration number: NCT02058420; results.Item Tai Chi Improves Brain Functional Connectivity and Plasma Lysophosphatidylcholines in Postmenopausal Women With Knee Osteoarthritis: An Exploratory Pilot Study(2022) Shen, Chwan Li (TTUHSC); Watkins, Bruce A.; Kahathuduwa, Chanaka (TTUHSC); Chyu, Ming Chien (TTUHSC); Zabet-Moghaddam, Masoud (TTU); Elmassry, Moamen M. (TTU); Luk, Hui Ying (TTUHSC); Brismée, Jean Michel (TTUHSC); Knox, Ami (TTUHSC); Lee, Jaehoon (TTUHSC); Zumwalt, Mimi (TTUHSC); Wang, Rui (TTUHSC); Wager, Tor D.; Neugebauer, Volker (TTUHSC)Objective: A pre/post pilot study was designed to investigate neurobiological mechanisms and plasma metabolites in an 8-week Tai-Chi (TC) group intervention in subjects with knee osteoarthritis. Methods: Twelve postmenopausal women underwent Tai-Chi group exercise for 8 weeks (60 min/session, three times/week). Outcomes were measured before and after Tai Chi intervention including pain intensity (VAS), Brief Pain Inventory (BPI), Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC), plasma metabolites (amino acids and lipids), as well as resting-state functional magnetic resonance imaging (rs-fMRI, 10 min, eyes open), diffusion tensor imaging (DTI, 12 min), and structural MRI (4.5 min) in a subgroup. Clinical data was analyzed using paired t-tests; plasma metabolites were analyzed using Wilcoxon signed-rank tests; and rs-fMRI data were analyzed using seed-based correlations of the left and right amygdala in a two-level mixed-effects model (FSL software). Correlations between amygdala-medial prefrontal cortex (mPFC) connectivity and corresponding changes in clinical outcomes were examined. DTI connectivity of each amygdala was modeled using a Bayesian approach and probabilistic tractography. The associations between neurobiological effects and pain/physical function were examined. Results: Significant pre/post changes were observed with reduced knee pain (VAS with most pain: p = 0.018; WOMAC-pain: p = 0.021; BPI with worst level: p = 0.018) and stiffness (WOMAC-stiffness, p = 0.020), that likely contributed to improved physical function (WOMAC-physical function: p = 0.018) with TC. Moderate to large effect sizes pre/post increase in rs-fMRI connectivity were observed between bilateral mPFC and the amygdala seed regions (i.e., left: d = 0.988, p = 0.355; right: d = 0.600, p = 0.282). Increased DTI connectivity was observed between bilateral mPFC and left amygdala (d = 0.720, p = 0.156). There were moderate-high correlations (r = 0.28–0.60) between TC-associated pre-post changes in amygdala-mPFC functional connectivity and pain/physical function improvement. Significantly higher levels of lysophosphatidylcholines were observed after TC but lower levels of some essential amino acids. Amino acid levels (alanine, lysine, and methionine) were lower after 8 weeks of TC and many of the lipid metabolites were higher after TC. Further, plasma non-HDL cholesterol levels were lower after TC. Conclusion: This pilot study showed moderate to large effect sizes, suggesting an important role that cortico-amygdala interactions related to TC have on pain and physical function in subjects with knee osteoarthritis pain. Metabolite analyses revealed a metabolic shift of higher lyso-lipids and lower amino acids that might suggest greater fatty acid catabolism, protein turnover and changes in lipid redistribution in response to TC exercise. The results also support therapeutic strategies aimed at strengthening functional and structural connectivity between the mPFC and the amygdala. Controlled clinical trials are warranted to confirm these observed preliminary effects.Item Turmeric Bioactive Compounds Alleviate Spinal Nerve Ligation-Induced Neuropathic Pain by Suppressing Glial Activation and Improving Mitochondrial Function in Spinal Cord and Amygdala(2023) Santos, Julianna M. (TTUHSC); Wang, Rui (TTUHSC); Bhakta, Viren (TTU); Driver, Zarek (TTU); Vadim, Yakhnitsa (TTUHSC); Kiritoshi, Takaki (TTUHSC); Ji, Guangchen (TTUHSC); Neugebauer, Volker (TTUHSC); Shen, Chwan Li (TTUHSC)This study examined the effects of turmeric bioactive compounds, curcumin C3 complex® (CUR) and bisdemethoxycurcumin (BDMC), on mechanical hypersensitivity and the gene expression of markers for glial activation, mitochondrial function, and oxidative stress in the spinal cord and amygdala of rats with neuropathic pain (NP). Twenty-four animals were randomly assigned to four groups: sham, spinal nerve ligation (SNL, an NP model), SNL+100 mg CUR/kg BW p.o., and SNL+50 mg BDMC/kg BW p.o. for 4 weeks. Mechanical hypersensitivity was assessed by the von Frey test (VFT) weekly. The lumbosacral section of the spinal cord and the right amygdala (central nucleus) were collected to determine the mRNA expression of genes (IBA-1, CD11b, GFAP, MFN1, DRP1, FIS1, PGC1α, PINK, Complex I, TLR4, and SOD1) utilizing qRT-PCR. Increased mechanical hypersensitivity and increased gene expression of markers for microglial activation (IBA-1 in the amygdala and CD11b in the spinal cord), astrocyte activation (GFAP in the spinal cord), mitochondrial dysfunction (PGC1α in the amygdala), and oxidative stress (TLR4 in the spinal cord and amygdala) were found in untreated SNL rats. Oral administration of CUR and BDMC significantly decreased mechanical hypersensitivity. CUR decreased CD11b and GFAP gene expression in the spinal cord. BDMC decreased IBA-1 in the spinal cord and amygdala as well as CD11b and GFAP in the spinal cord. Both CUR and BDMC reduced PGC1α gene expression in the amygdala, PINK1 gene expression in the spinal cord, and TLR4 in the spinal cord and amygdala, while they increased Complex I and SOD1 gene expression in the spinal cord. CUR and BDMC administration decreased mechanical hypersensitivity in NP by mitigating glial activation, oxidative stress, and mitochondrial dysfunction.