• English
    • español
    • français
    • Deutsch
  • English 
    • English
    • español
    • français
    • Deutsch
  • Login
View Item 
  •   TTU DSpace Home
  • ThinkTech
  • Electronic Theses and Dissertations
  • View Item
  •   TTU DSpace Home
  • ThinkTech
  • Electronic Theses and Dissertations
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Image recovery and segmentation using competitive learning in a neighborhood system

Thumbnail
View/Open
31295017084392.pdf (13.34Mb)
Date
2002-12
Author
Li, Chengcheng
Metadata
Show full item record
Abstract
Image restoration and segmentation are important image processing techniques. In recent years, many researchers in the image restoration field have based their research methods on calculus of variation and mathematical statistics and do not directly incorporate the observed principles of a low-level animal vision. In a previous work, based on the principle of low-level mammalian visual system that deals with image restoration and segmentation problems from a more direct and easily understandable and acceptable aspect, a new algorithm incorporating competitive leaming method was developed. This algorithm yields improved performance over previous studies in synthetic image restoration. This paper furthers the development and application of this algorithm. This paper has purpose that is threefold. First, this paper presents results for reconstruction and estimation of uncorrupted images from a distorted or a noisy image by using competitive leaming method. This paper evaluates the CLRS (Competitive Leaming in image Restoration and Segmentation) method by experimenting with this algorithm on a variety of images and a wide range of parameters, both based on practices and theories. The meaning and value range of some parameters are discussed in detail. Second, we enlarged the size of the neighborhood used in CLRS to see the influence of neighborhood range. Third, we reviewed the current methods both in image restoration and edge detection, then we compared the restoration and segmentation results obtained from CLRS and all the other methods. The results showed that CLRS algorithm performances were consistently better or equal in edged preservation and comparable performance in enhancing within the boundaries. These results are based on simulation experiments on a set of synthetic and real images corrupted by Gaussian noise. We concluded that an interactive algorithm for image reconstruction and segmentation, CLRS, has been developed. This algorithm is based on the principle of competitive leaming.
Citable Link
http://hdl.handle.net/2346/22130
Collections
  • Electronic Theses and Dissertations

DSpace software copyright © 2002-2016  DuraSpace
Contact Us
TDL
Theme by 
Atmire NV
 

 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDepartmentThis CollectionBy Issue DateAuthorsTitlesSubjectsDepartment

My Account

LoginRegister

Statistics

View Usage Statistics

DSpace software copyright © 2002-2016  DuraSpace
Contact Us
TDL
Theme by 
Atmire NV