HabNet – An Integrated Habitation and Supportability Architecting and Analysis Environment

Date

2015-07-12

Journal Title

Journal ISSN

Volume Title

Publisher

45th International Conference on Environmental Systems

Abstract

Accomplishing the ultimate goal of a sustained human presence on the surface of Mars requires the clear definition of a technology development and mission roadmap supported by architectural decisions that maximize the probability of achieving all scientific and technical objectives while minimizing the uncertainty in program lifecycle costs. To support this process, we have developed an integrated habitation and supportability architecting and analysis environment called HabNet. HabNet quantitatively evaluates various technology options for a proposed mission architecture in terms of their functional performance, their failure modes, their supportability requirements, and ultimately their initial deployment and lifecycle operational costs. This paper provides an overview of the development and current status of HabNet, and presents two illustrative case studies based on a permanently crewed Mars surface outpost. The first case study quantifies the total lifecycle consumables and spare parts resupply mass required to be delivered to the outpost for five life support system architectures of different levels of resource loop closure, while the second case study investigates the system-level impacts of one-at-a-time subsystem failures and quantifies the time delay between the initiation and impact of each failure on the crew’s wellbeing. Through these analyses, we find that the total mass of the initially emplaced life support system is minor compared to the lifecycle consumables and spare parts resupply requirements, and that a life support system consisting of a water and urine processor assembly supplemented by an open loop oxygen supply may be the most mass efficient in terms of total lifecycle mass. Moreover, we find that with the exception of the time-critical failure of the Carbon Dioxide Removal Assembly, all subsystem failures investigated under the conditions of this study occur over time scales that are long enough to permit repair and recovery operations without depending on backup systems to support the crew during these operations.

Description

Bellevue, Washington
Sydney Do, Massachusetts Institute of Technology, USA
Andrew Owens, Massachusetts Institute of Technology, USA
Olivier de Weck, Massachusetts Institute of Technology, USA
The 45th International Conference on Environmental Systems was held in Bellevue, Washington, USA on 12 July 2015 through 16 July 2015.

Keywords

Citation