Efficacy of FTIR Analysis in Determining CO2 Loading on Diglycolamine

Date

2018-07-08

Journal Title

Journal ISSN

Volume Title

Publisher

48th International Conference on Environmental Systems

Abstract

In support of advanced air revitalization technologies to enable human spaceflight beyond low earth orbit, performance studies have been conducted using a liquid amine, Diglycolamine (DGA) between teams at NASA’s Johnson Spaceflight Center (JSC) and Ames Research Center (ARC). Liquid amines have been used in regenerable earth-based systems to remove CO2 from industrial systems as well as for closed-environment air revitalization because they can be regenerated at lower temperatures than solid sorbent systems. As an additional advantage to solid sorbent-based systems, liquid sorbents can be cycled between an adsorbing contactor and degassing chamber, thereby reducing system complexity by operation in a continuous loop. In an effort to inform a regeneration system design for micro-gravity applications, ARC has performed a number of tests to characterize the degas mechanics of DGA. In order to accurately measure the amount of CO2 captured or released by the amine, methods such as gravimetric weighing and chemical desorption are reasonable, however the first iteration test setup for a scaled down degas system required analysis on small sample sizes. Fourier-transform infrared spectroscopy (FTIR) analysis was experimentally evaluated to analyze CO2 concentration because it can produce measurements with sample sizes on the order of 100’s of μL. Calibration against chemical desorption showed relatively good correlation and test data showed reasonable adherence to expected trends, however more extensive testing should be conducted to fully validate the usage of FTIR to determine CO2 loading on DGA.

Description

Roger Huang, NASA
Mark Silveria, Independent
Jessica Kong, NASA
Grace Belancik, NASA
Darrell Jan, NASA
ICES302: Physio-chemical Life Support- Air Revitalization Systems -Technology and Process Development
The 48th International Conference on Environmental Systems was held in Albuquerque, New Mexico, USA on 08 July 2018 through 12 July 2018.

Keywords

Fourier transform infrared spectroscopy, Air revitalization, Liquid amine sorbent

Citation