• English
    • español
    • français
    • Deutsch
  • Deutsch 
    • English
    • español
    • français
    • Deutsch
  • Einloggen
Dokumentanzeige 
  •   TTU DSpace Startseite
  • ThinkTech
  • Electronic Theses and Dissertations
  • Dokumentanzeige
  •   TTU DSpace Startseite
  • ThinkTech
  • Electronic Theses and Dissertations
  • Dokumentanzeige
JavaScript is disabled for your browser. Some features of this site may not work without it.

Evaluating class imbalance and asymmetric costs using machine learning

Thumbnail
Öffnen
MEEKS-DISSERTATION-2020.pdf (679.1Kb)
Datum
2020-08
Autor
Meeks, Samuel Frank
0000-0001-6722-7021
Metadata
Zur Langanzeige
Zusammenfassung
The current study will evaluate the use of machine learning as a form of risk assessment as it fits within the risk-need-responsivity framework. Specifically, the risk of violent reconviction will attempt to be predicted by multiple machine learning algorithms. As violent reconviction has significant class imbalance, as well as asymmetric error cost, methodologies accounting for these potentially problematic situations will be evaluated. While machine learning has been shown as an improvement over traditional assessment, more research is necessary to determine the most effective practices when applying its specialized methodologies. Analysis of the techniques used as treatment for class imbalance and asymmetric cost has not been researched on actual criminal justice data, leading to a gap in the scientific literature necessary to evaluate their genuine performance when applied.
Citable Link
https://hdl.handle.net/2346/86573
Collections
  • Electronic Theses and Dissertations

DSpace software copyright © 2002-2016  DuraSpace
Kontakt
TDL
Theme by 
Atmire NV
 

 

Stöbern

Gesamter BestandBereiche & SammlungenErscheinungsdatumAutorenTitelnSchlagwortenDepartmentDiese SammlungErscheinungsdatumAutorenTitelnSchlagwortenDepartment

Mein Benutzerkonto

EinloggenRegistrieren

Statistik

Benutzungsstatistik

DSpace software copyright © 2002-2016  DuraSpace
Kontakt
TDL
Theme by 
Atmire NV