Model evaluations of multipactor suppression in rectangular waveguides through grooved surfaces and static magnetic field
Date
2021Auteur
Qiu, X.
Saed, M.A.
Mankowski, J.J.
Dickens, J.
Neuber, A.
Joshi, R.P.
Metadata
Afficher la notice complèteRésumé
Mitigation of multipactor in waveguides is of importance, and strategies have included the addition of external fields, materials engineering,
or surface modifications. Here, geometry modifications of rectangular waveguide surfaces and the application of an axial magnetic field
are investigated for suppressing multipactor growth. A Monte Carlo approach has been used to simulate electron dynamics. The empirical
secondary electrons yield is modeled based on a modified Vaughan approach. The electric fields driving electron transport were derived
from separate electromagnetic calculations to adequately include field perturbations due to the presence of surface patterns in the rectangular
waveguide structure. Combinations of grooves and a DC magnetic field are shown to effectively mitigate multipactor growth at field strengths
up to ∼10^5 V/m. Finding optimal combinations for an arbitrary field and operating frequency requires further work.