Show simple item record

dc.creatorLiu, Zhiyong
dc.creatorChen, Lei
dc.creatorSmith, Nicholas G.
dc.creatorYuan, Wenping
dc.creatorChen, Xiaohong
dc.creatorZhou, Guoyi
dc.creatorAlam, Syed Ashraful
dc.creatorLin, Kairong
dc.creatorZhao, Tongtiegang
dc.creatorZhou, Ping
dc.creatorChu, Chengjin
dc.creatorMa, Hanqing
dc.creatorLiu, Jianquan
dc.date.accessioned2021-05-03T20:49:19Z
dc.date.available2021-05-03T20:49:19Z
dc.date.issued2019
dc.identifier.citationLiu, Z, L Chen, NG Smith, W Yun, X Chen, G Zhou, SA Alam, K Lin, T Zhao, P Zhou, C Chu, H Ma, and J Liu (2019). Global divergent responses of primary productivity to water, energy, and CO2. Environmental Research Letters 14(12): 124044. https://doi.org/10.1088/1748-9326/ab57c5en_US
dc.identifier.urihttps://doi.org/10.1088/1748-9326/ab57c5
dc.identifier.urihttps://hdl.handle.net/2346/86920
dc.description.abstractThe directionality of the response of gross primary productivity (GPP) to climate has been shown to vary across the globe. This effect has been hypothesized to be the result of the interaction between multiple bioclimatic factors, including environmental energy (i.e. temperature and radiation) and water availability. This is due to the tight coupling between water and carbon cycling in plants and the fact that temperature often drives plant water demand. Using GPP data extracted from 188 sites of FLUXNET2015 and observation-driven terrestrial biosphere models (TBMs), we disentangled the confounding effects of temperature, precipitation and carbon dioxide on GPP, and examined their long-term effects on productivity across the globe. Based on the FLUXNET2015 data, we observed a decline in the positive effect of temperature on GPP, while the positive effects of precipitation and CO2 were becoming stronger during 2000–2014. Using data derived from TBMs between 1980 and 2010 we found similar effects globally. The modeled data allowed us to investigate these effects more thoroughly over space and time. In arid regions, the modeled response to precipitation increased since 1950, approximately 30 years earlier than in humid regions. We further observed the negative effects of summer temperature on GPP in arid regions, suggesting greater aridity stress on productivity under global warming. Our results imply that aridity stress, triggered by rising temperatures, has reduced the positive influence of temperature on GPP, while increased precipitation and elevated CO2 may alleviate negative aridity impacts.en_US
dc.language.isoengen_US
dc.subjectClimate Warmingen_US
dc.subjectGross Primary Productivityen_US
dc.subjectRising Temperatureen_US
dc.subjectPrecipitationen_US
dc.subjectWater Availabilityen_US
dc.titleGlobal divergent responses of primary productivity to water, energy, and CO2en_US
dc.typeArticleen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record