From Mosaic to Systemic Redux: The Conceptual Foundation of Resilience and Its Operational Implications for Water Resource Management

Abstract

Preserving and enhancing the resilience of water supply systems is an important goal for managers to help ensure the ongoing availability of a resource necessary to both economic activity and basic survival. If not explicitly identified as a goal, it can be inferred from the desire to preserve water supply against a variety of stressors for current and future generations. Pursuing resilience is less than straightforward as there are multiple concurrent theoretical paradigms. Furthermore, operationalizing even one of these can be challenging. The authors survey several dominant paradigms with an eye towards distilling the essential, combinative properties of resilience. The contention underwriting this approach is that each paradigm yields important insights about resilience as a complex, emergent system characteristic. This survey lays the foundation for the operationalized approach that is the central thrust of the paper. Specifically, the authors develop an equation based on these properties and identify water resource metrics that correspond to each property. The analysis concludes with a preliminary causal loop diagram intended to capture key system variables and relationships between them. The authors argue that a systemic, conceptually robust approach to resilience is necessary to (1) assess current levels, and (2) improve levels of water resource system resilience.

Description

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

Keywords

Resilience, Water Resource Management, Resilience Properties, Social-Ecological Systems

Citation

Burgess R, Horbatuck K, Beruvides M. From Mosaic to Systemic Redux: The Conceptual Foundation of Resilience and Its Operational Implications for Water Resource Management. Systems. 2019; 7(3):32. https://doi.org/10.3390/systems7030032

Collections