• English
    • español
    • français
    • Deutsch
  • français 
    • English
    • español
    • français
    • Deutsch
  • Ouvrir une session
Voir le document 
  •   Accueil de TTU DSpace
  • ThinkTech
  • Faculty Research
  • Voir le document
  •   Accueil de TTU DSpace
  • ThinkTech
  • Faculty Research
  • Voir le document
JavaScript is disabled for your browser. Some features of this site may not work without it.

The Hodrick-Prescott Filter: A special case of penalized spline smoothing

Thumbnail
Voir/Ouvrir
Main article with TTU Libraries cover page (341.5Ko)
Date
2010
Auteur
Paige, Robert L.
Trindade, A. Alexandre (TTU)
Metadata
Afficher la notice complète
Résumé
We prove that the Hodrick-Prescott Filter (HPF), a commonly used method for smoothing econometric time series, is a special case of a linear penalized spline model with knots placed at all observed time points (except the first and last) and uncorrelated residuals. This equivalence then furnishes a rich variety of existing data-driven parameter estimation methods, particularly restricted maximum likelihood (REML) and generalized cross-validation (GCV). This has profound implications for users of HPF who have hitherto typically relied on subjective choice, rather than estimation, for the smoothing parameter. By viewing estimates as roots of an appropriate quadratic estimating equation, we also present a new approach for constructing confidence intervals for the smoothing parameter. The method is akin to a parametric bootstrap where Monte Carlo simulation is replaced by saddlepoint approximation, and provides a fast and accurate alternative to exact methods, when they exist, e.g. REML. More importantly, it is also the only computationally feasible method when no other methods, exact or otherwise, exist, e.g. GCV. The methodology is demonstrated on the Gross National Product (GNP) series originally analyzed by Hodrick and Prescott (1997). With proper attention paid to residual correlation structure, we show that REML-based estimation delivers an appropriate smooth for both the GNP series and its returns.
Citable Link
https://doi.org/10.1214/10-EJS570
https://hdl.handle.net/2346/89336
Collections
  • Faculty Research

DSpace software copyright © 2002-2016  DuraSpace
Contactez-nous
TDL
Theme by 
Atmire NV
 

 

Parcourir

Tout DSpaceCommunautés & CollectionsPar date de publicationAuteursTitresSujetsDepartmentCette collectionPar date de publicationAuteursTitresSujetsDepartment

Mon compte

Ouvrir une sessionS'inscrire

Statistiques

Statistiques d'usage de visualisation

DSpace software copyright © 2002-2016  DuraSpace
Contactez-nous
TDL
Theme by 
Atmire NV