• English
    • español
    • français
    • Deutsch
  • français 
    • English
    • español
    • français
    • Deutsch
  • Ouvrir une session
Voir le document 
  •   Accueil de TTU DSpace
  • ThinkTech
  • International Conference on Environmental Systems
  • Voir le document
  •   Accueil de TTU DSpace
  • ThinkTech
  • International Conference on Environmental Systems
  • Voir le document
JavaScript is disabled for your browser. Some features of this site may not work without it.

Trade Study Analysis of a Cryogenic Oxygen Architecture for Lunar Outpost Life Support

Thumbnail
Voir/Ouvrir
ICES-2022-417.pdf (1.710Mo)
Date
7/10/2022
Auteur
Chen, Thomas
Sweterlitsch, Jeffrey
Metadata
Afficher la notice complète
Résumé
A trade study was performed to compare the use of cryogenic liquid oxygen (LOX) with high pressure gaseous oxygen (GOX) and electrolysis approaches for Lunar outpost life support, which consists of a surface habitat and pressurized rover. This analysis presents the relevant mission details pertaining to a Lunar outpost architecture, discusses the viable concept of operations (ConOps) for each architecture, and compares the equivalent system mass (ESM) of the cryogenic LOX, high pressure GOX, and electrolysis approaches across different parameter trades, e.g. mission duration or extravehicular activity (EVA) frequency, for the single and 10-year mission architectures. For a single nominal mission, high pressure GOX is favored for short missions (< 50 days); cryogenic LOX is favored for a wide-range of mission durations (50 � 270 days); and the electrolysis approach is favored for long missions (> 270 days). However, when considering a 10-year mission architecture, each additional resupply negatively impacts cryogenic LOX due to the additional replacement tankage. Thus, over a 10-year mission, an electrolysis approach, which can provide all life support O2 needs utilizing solely recovered H2O, appears to be favored over cryogenic LOX. However, a real electrolysis system may need resupplied H2O due to incomplete closure of the air revitalization loop. Thus, the cryogenic LOX approach was compared with the electrolysis approaches utilizing 100% resupplied or 100% recovered H2O to approximate the resupplied to recovered H2O ratio, i.e. the degree of loop closure, where one approach trades over the other. Additionally, gaps were identified, which are expected to affect the viability and trade of LOX. These include the development of cryogenic pumps and vaporizers to generate high pressure GOX from LOX as well as understanding payload limitations which can affect O2 resupply. This analysis highlights the possible viability and favorable trade of cryogenic LOX depending on mission parameters.
Citable Link
https://hdl.handle.net/2346/89865
Collections
  • International Conference on Environmental Systems

DSpace software copyright © 2002-2016  DuraSpace
Contactez-nous
TDL
Theme by 
Atmire NV
 

 

Parcourir

Tout DSpaceCommunautés & CollectionsPar date de publicationAuteursTitresSujetsDepartmentCette collectionPar date de publicationAuteursTitresSujetsDepartment

Mon compte

Ouvrir une sessionS'inscrire

Statistiques

Statistiques d'usage de visualisation

DSpace software copyright © 2002-2016  DuraSpace
Contactez-nous
TDL
Theme by 
Atmire NV