• English
    • español
    • français
    • Deutsch
  • English 
    • English
    • español
    • français
    • Deutsch
  • Login
View Item 
  •   TTU DSpace Home
  • ThinkTech
  • Faculty Research
  • View Item
  •   TTU DSpace Home
  • ThinkTech
  • Faculty Research
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A Copula Based Approach for Design of Multivariate Random Forests for Drug Sensitivity Prediction

Thumbnail
View/Open
Main article with TTU Libraries cover page (3.599Mb)
Date
2015
Author
Haider, Saad (TTU)
Rahman, Raziur (TTU)
Ghosh, Souparno (TTU)
Pal, Ranadip (TTU)
Metadata
Show full item record
Abstract
Modeling sensitivity to drugs based on genetic characterizations is a significant challenge in the area of systems medicine. Ensemble based approaches such as Random Forests have been shown to perform well in both individual sensitivity prediction studies and team science based prediction challenges. However, Random Forests generate a deterministic predictive model for each drug based on the genetic characterization of the cell lines and ignores the relationship between different drug sensitivities during model generation. This application motivates the need for generation of multivariate ensemble learning techniques that can increase prediction accuracy and improve variable importance ranking by incorporating the relationships between different output responses. In this article, we propose a novel cost criterion that captures the dissimilarity in the output response structure between the training data and node samples as the difference in the two empirical copulas. We illustrate that copulas are suitable for capturing the multivariate structure of output responses independent of the marginal distributions and the copula based multivariate random forest framework can provide higher accuracy prediction and improved variable selection. The proposed framework has been validated on genomics of drug sensitivity for cancer and cancer cell line encyclopedia database.
Citable Link
https://doi.org/10.1371/journal.pone.0144490
https://hdl.handle.net/2346/90488
Collections
  • Faculty Research

DSpace software copyright © 2002-2016  DuraSpace
Contact Us
TDL
Theme by 
Atmire NV
 

 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDepartmentThis CollectionBy Issue DateAuthorsTitlesSubjectsDepartment

My Account

Login

Statistics

View Usage Statistics

DSpace software copyright © 2002-2016  DuraSpace
Contact Us
TDL
Theme by 
Atmire NV