• English
    • español
    • français
    • Deutsch
  • Deutsch 
    • English
    • español
    • français
    • Deutsch
  • Einloggen
Dokumentanzeige 
  •   TTU DSpace Startseite
  • ThinkTech
  • Faculty Research
  • Dokumentanzeige
  •   TTU DSpace Startseite
  • ThinkTech
  • Faculty Research
  • Dokumentanzeige
JavaScript is disabled for your browser. Some features of this site may not work without it.

Estimating Cotton Nitrogen Nutrition Status Using Leaf Greenness and Ground Cover Information

Thumbnail
Öffnen
Main article with TTU Libraries cover page (704.5Kb)
Datum
2015
Autor
Muharam, Farrah Melissa (TTU)
Maas, Stephen J. (TTU)
Bronson, Kevin F.
Delahunty, Tina
Metadata
Zur Langanzeige
Zusammenfassung
Assessing nitrogen (N) status is important from economic and environmental standpoints. To date, many spectral indices to estimate cotton chlorophyll or N content have been purely developed using statistical analysis approach where they are often subject to site-specific problems. This study describes and tests a novel method of utilizing physical characteristics of N-fertilized cotton and combining field spectral measurements made at different spatial scales as an approach to estimate in-season chlorophyll or leaf N content of field-grown cotton. In this study, leaf greenness estimated from spectral measurements made at the individual leaf, canopy and scene levels was combined with percent ground cover to produce three different indices, named TCCLeaf, TCCCanopy, and TCCScene. These indices worked best for estimating leaf N at early flowering, but not for chlorophyll content. Of the three indices, TCCLeaf showed the best ability to estimate leaf N (R2 = 0.89). These results suggest that the use of green and red-edge wavelengths derived at the leaf scale is best for estimating leaf greenness. TCCCanopy had a slightly lower R2 value than TCCLeaf (0.76), suggesting that the utilization of yellow and red-edge wavelengths obtained at the canopy level could be used as an alternative to estimate leaf N in the absence of leaf spectral information. The relationship between TCCScene and leaf N was the lowest (R2 = 0.50), indicating that the estimation of canopy greenness from scene measurements needs improvement. Results from this study confirmed the potential of these indices as efficient methods for estimating in-season leaf N status of cotton.
Citable Link
https://doi.org/10.3390/rs70607007
https://hdl.handle.net/2346/90496
Collections
  • Faculty Research

DSpace software copyright © 2002-2016  DuraSpace
Kontakt
TDL
Theme by 
Atmire NV
 

 

Stöbern

Gesamter BestandBereiche & SammlungenErscheinungsdatumAutorenTitelnSchlagwortenDepartmentDiese SammlungErscheinungsdatumAutorenTitelnSchlagwortenDepartment

Mein Benutzerkonto

Einloggen

Statistik

Benutzungsstatistik

DSpace software copyright © 2002-2016  DuraSpace
Kontakt
TDL
Theme by 
Atmire NV