• English
    • español
    • français
    • Deutsch
  • Deutsch 
    • English
    • español
    • français
    • Deutsch
  • Einloggen
Dokumentanzeige 
  •   TTU DSpace Startseite
  • ThinkTech
  • Metadata Automation Test
  • Dokumentanzeige
  •   TTU DSpace Startseite
  • ThinkTech
  • Metadata Automation Test
  • Dokumentanzeige
JavaScript is disabled for your browser. Some features of this site may not work without it.

Leaf nitrogen from the perspective of optimal plant function

Thumbnail
Datum
2022
Autor
Dong, Ning
Prentice, Iain Colin
Wright, Ian J.
Wang, Han
Atkin, Owen K.
Bloomfield, Keith J.
Domingues, Tomas F.
Gleason, Sean M.
Maire, Vincent
Onoda, Yusuke
Poorter, Hendrik
Smith, Nicholas G. (TTU)
Metadata
Zur Langanzeige
Zusammenfassung
Leaf dry mass per unit area (LMA), carboxylation capacity (Vcmax) and leaf nitrogen per unit area (Narea) and mass (Nmass) are key traits for plant functional ecology and ecosystem modelling. There is however no consensus about how these traits are regulated, or how they should be modelled. Here we confirm that observed leaf nitrogen across species and sites can be estimated well from observed LMA and Vcmax at 25°C (Vcmax25). We then test the hypothesis that global variations of both quantities depend on climate variables in specific ways that are predicted by leaf-level optimality theory, thus allowing both Narea to be predicted as functions of the growth environment. A new global compilation of field measurements was used to quantify the empirical relationships of leaf N to Vcmax25 and LMA. Relationships of observed Vcmax25 and LMA to climate variables were estimated, and compared to independent theoretical predictions of these relationships. Soil effects were assessed by analysing biases in the theoretical predictions. LMA was the most important predictor of Narea (increasing) and Nmass (decreasing). About 60% of global variation across species and sites in observed Narea, and 31% in Nmass, could be explained by observed LMA and Vcmax25. These traits, in turn, were quantitatively related to climate variables, with significant partial relationships similar or indistinguishable from those predicted by optimality theory. Predicted trait values explained 21% of global variation in observed site-mean Vcmax25, 43% in LMA and 31% in Narea. Predicted Vcmax25 was biased low on clay-rich soils but predicted LMA was biased high, with compensating effects on Narea. Narea was overpredicted on organic soils. Synthesis. Global patterns of variation in observed site-mean Narea can be explained by climate-induced variations in optimal Vcmax25 and LMA. Leaf nitrogen should accordingly be modelled as a consequence (not a cause) of Vcmax25 and LMA, both being optimized to the environment. Nitrogen limitation of plant growth would then be modelled principally via whole-plant carbon allocation, rather than via leaf-level traits. Further research is required to better understand and model the terrestrial nitrogen and carbon cycles and their coupling.
Citable Link
https://doi.org/10.1111/1365-2745.13967
https://hdl.handle.net/2346/91937
Collections
  • Metadata Automation Test

DSpace software copyright © 2002-2016  DuraSpace
Kontakt
TDL
Theme by 
Atmire NV
 

 

Stöbern

Gesamter BestandBereiche & SammlungenErscheinungsdatumAutorenTitelnSchlagwortenDepartmentDiese SammlungErscheinungsdatumAutorenTitelnSchlagwortenDepartment

Mein Benutzerkonto

Einloggen

Statistik

Benutzungsstatistik

DSpace software copyright © 2002-2016  DuraSpace
Kontakt
TDL
Theme by 
Atmire NV