• English
    • español
    • français
    • Deutsch
  • Deutsch 
    • English
    • español
    • français
    • Deutsch
  • Einloggen
Dokumentanzeige 
  •   TTU DSpace Startseite
  • ThinkTech
  • Faculty Research
  • Dokumentanzeige
  •   TTU DSpace Startseite
  • ThinkTech
  • Faculty Research
  • Dokumentanzeige
JavaScript is disabled for your browser. Some features of this site may not work without it.

Stability analysis of plant-root-reinforced shallow slopes along mountainous road corridors based on numerical modeling

Thumbnail
Öffnen
Main article with TTU Libraries cover page.pdf (21.59Mb)
Datum
2020
Autor
Tsige, Damtew
Senadheera, Sanjaya (TTU)
Talema, Ayalew
Metadata
Zur Langanzeige
Zusammenfassung
Engineering methods such as soil nails, geosynthetic reinforcement, retaining structures, gabions, and shotcrete are implemented to stabilize road cut slopes along mountainous areas. However, these structures are not environmentally friendly and, particularly in Ethiopia, it is impossible to address all road problems due to financial limitations. Nowadays, soil reinforcement with plant roots is recognized as an environmentally sustainable alternative to improve shallow slope failure along mountainous transportation corridors. The aims of this study was, therefore, to conduct slope stability analysis along a road corridor by incorporating the effect of plant roots. Five plant species were selected for the analysis based on their mechanical characteristics. Namely, Eucalyptus globules (tree), Psidium guajava (shrub), Salix subserrata (shrub), Chrysopogon zizanioides, and Pennisetum macrourum (grasses). The roots’ tensile strength and soil parameters were determined through tensile strength testing and triaxial compression tests, respectively. The factor of safety of the slope was calculated by the PLAXIS-2D software. The study showed that when the slope was reinforced with plant roots, the factor of safety (FOS) improved from 22–34%. The decreasing effect of vegetation on slope stability was observed when soil moisture increased. The sensitivity analysis also indicated that: (1) as the spacing between plants decreased, the effect of vegetation on the slope increased. (2) Slope angle modification with a combination of plant roots had a significant impact on slope stabilization. Of the five-selected plant species, Salix subserrata was the promising plant species for slope stabilization as it exhibited better root mechanical properties among selected plant species.
Citable Link
https://doi.org/10.3390/geosciences10010019
https://hdl.handle.net/2346/92170
Collections
  • Faculty Research

DSpace software copyright © 2002-2016  DuraSpace
Kontakt
TDL
Theme by 
Atmire NV
 

 

Stöbern

Gesamter BestandBereiche & SammlungenErscheinungsdatumAutorenTitelnSchlagwortenDepartmentDiese SammlungErscheinungsdatumAutorenTitelnSchlagwortenDepartment

Mein Benutzerkonto

Einloggen

Statistik

Benutzungsstatistik

DSpace software copyright © 2002-2016  DuraSpace
Kontakt
TDL
Theme by 
Atmire NV