• English
    • español
    • français
    • Deutsch
  • English 
    • English
    • español
    • français
    • Deutsch
  • Login
View Item 
  •   TTU DSpace Home
  • ThinkTech
  • Electronic Theses and Dissertations
  • View Item
  •   TTU DSpace Home
  • ThinkTech
  • Electronic Theses and Dissertations
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Branch-and-cut for cardinality optimization

Thumbnail
View/Open
SIKKA-THESIS.pdf (276.1Kb)
Date
2010-12
Author
Sikka, Ankit
Metadata
Show full item record
Abstract
A cardinality constrained linear programming problem (CCLP) is a linear programming problem with an additional constraint which restricts the number of nonnegative variables that may take on positive values. This problem arises in a large variety of applications, such as portfolio optimization, compressive sensing, metabolic engineering, and maximum feasible subsystem. In this thesis we review the branch-and-cut approach for CCLP, and we focus on the polyhedral approach to it. We rst present branching strategies to solve this model through branch-and-cut. To set the stage for important results on CCLP, we give some important results on the cardinality constrained knapsack polytope (CCKP). We then determine when the trivial inequalities de ne facets of CCKP. Finally, we discuss the nontrivial inequalities, which can be used as cuts in a branch-and-cut scheme.
Citable Link
http://hdl.handle.net/2346/ETD-TTU-2010-12-1062
Collections
  • Electronic Theses and Dissertations

DSpace software copyright © 2002-2016  DuraSpace
Contact Us
TDL
Theme by 
Atmire NV
 

 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDepartmentThis CollectionBy Issue DateAuthorsTitlesSubjectsDepartment

My Account

LoginRegister

Statistics

View Usage Statistics

DSpace software copyright © 2002-2016  DuraSpace
Contact Us
TDL
Theme by 
Atmire NV