New-generation spacecraft water monitoring with flight-ready solid state nanopore

Date

7/10/2022

Journal Title

Journal ISSN

Volume Title

Publisher

51st International Conference on Environmental Systems

Abstract

To provide a fast, simple and reliable way of identifying inorganics and organics present in the water systems aboard the international space station (ISS) and potentially other spacecraft (e.g., NASA's Artemis Gateway Outpost), we aim to develop a robust, portable and easy-to-use sensor system based on solid-state nanopore technology. The current water monitoring capability in the ISS is only limited to electrical conductivity, total organic carbon and selected ions of iodine and silver. Any other analyte must be brought back to Earth. The maintenance of safe living conditions in ISS is important in order to support the scientific activities of the crew, and to ensure their unharmed return to Earth upon mission completion. The solid-state nanopore system presents an inherently single-molecule sensor system that works on the principle of pore occlusion by the molecule which then can be registered as a change of the electrical current. Each analyte establishes its unique electrical signal upon passing through the nanopore of tailored characteristics. We use a low-noise and low-capacitance glass chip with an ultrathin (20 nm-thick) silicon nitride (SiN) membrane material which has flight heritage, together with a compact (centimeter-scale) nanopore reader to sense and identify analytes of interest to NASA. Enabled by special short DNA molecules ("aptamers") as probes, we demonstrate the detection of mercury and lead using 2-5 nm- diameter nanopores at concentrations down to 0.5 nM and 5 nM, respectively, which are below EPA and SWEGs levels. We observed distinct electrical translocation characteristics between these two metal ions, paving a path towards selective nanopore sensors by identifying their "electrical fingerprints." Our single-molecule nanopore instrument allows the detection of low-concentration analytes in water and is thus a promising tool for a miniaturized analytical laboratory for future NASA missions, together with other analytical tools available.

Description

Zehui Xia, Goeppert LLC, US
Brian DiPaolo, Goeppert LLC, US
ICES205: Advanced Life Support Sensor and Control Technology
The 51st International Conference on Environmental Systems was held in Saint Paul, Minnesota, US, on 10 July 2022 through 14 July 2022.

Keywords

Water monitoring, solid state nanopore, single molecule sensing, aptamer, heavy metal

Citation