Regulation of calcium stores in normal and diabetic endothelial cells
Date
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Cytosolic Ca^^ ([Ca^^]'^^) mediates many cellular ftinctions, e.g.. cell growth, motility, secretion, etc. In many cell types, ion transport processes appear to be dependent on metabolism of glucose for maximal activity. In certain cell types, a strict coupling between glycolysis and the acfivity of Endoplasmic Reticulum Ca^"-ATPases (SERCA). involved in regulating Ca^^ homeostasis, has been suggested. In diabetes, glucose homeostasis is altered. We hypothesize that Ca^^ homeostasis in microvascular endothelial cells from diabetic animals is altered due to a dysfunction of glycolysis coupling the activity of SERCA. We further hypothesize that endosomal/lysosomal (E/L) compartments exhibiting SERCA are involved in this dysfunction. Our data indicated that agonist stimulation (ATP, vasopressin, angiotensin-II)elicited [Ca^"]^^ increases (independent of extracellular Ca^^) that were larger in endothelial cells from diabetic than from normal animals. Simultaneous measurements of [Ca^^]'^^' and Ca^^ in E/L compartments ([Ca^^]^) using fluorescence spectroscopy, indicated that E/L compartments released Ca^^ following agonist-stimulation. The magnitude of the Ca'* release was significantly larger in microvascular endothelial cells from diabetic rats. SERCA inhibitors elicited Ca^^ releases from E/L compartments in both normal and diabetic models. The magnitude of the [Ca^^]^ release was however similar among normal and diabetic cells. Immunocytochemical experiments demonstrated that 60% of E/L compartments exhibited SERCA. These data indicate that (a) E/L compartments are important for Ca^^ homeostasis in microvascular endothelial cells from both normal and diabetic models; (b) Ca^^ regulation in E/L compartments is different in cells from a diabefic model, (c) the compartment involved in altered Ca'* homeostasis in diabetes is unknown.