Assessing trace-element mobility during alteration of rhyolite tephra from the Dinaride Lake System using glass-phase and clay-separate laser ablation inductively coupled plasma mass spectrometry

Date

2022

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

This paper reports a novel approach in the study of trace-element mobility during the argillization of volcanic glass that is based on in situ laser ablation inductively coupled plasma mass spectrometry glass analyses and that of spatially related illite-smectite collected in the form of fraction separates. The material studied originates from lacustrine sediments of the Dinaride Lake System that bear evidence of intensive weathering of distal tephra during the Miocene climatic optimum. Yttrium and HREE were probably mobilized from decomposing glass in the form of carbonate complexes and were consequently depleted significantly in the clays studied. On the other hand, the Mg-rich illite-smectite demonstrates an elevated adsorption potential of solvated LREE complexes. This may be explained through clay surface geochemistry controlled largely by Mg for Al octahedral substitution. This paper highlights the role of eogenetic 2:1 clay aluminosilicates that, under favourable geological conditions, may be conducive to secondary REE enrichment and the formation of potential ion adsorption-type deposits.

Description

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution and reproduction, provided the original article is properly cited.

Rights

Availability

Keywords

Bentonite, Dinarides, Glass Alteration, Illite-Smectite, LA-ICP-MS, REE, Trace Elements

Citation

Badurina, L., & Šegvić, B. (2022). Assessing trace-element mobility during alteration of rhyolite tephra from the Dinaride Lake System using glass-phase and clay-separate laser ablation inductively coupled plasma mass spectrometry. Clay Minerals, 1–6. http://doi.org/10.1180/clm.2022.12

Collections