Xenobiotic Effects of Chlorine Dioxide to Escherichia coli O157:H7 on Non-host Tomato Environment Revealed by Transcriptional Network Modeling: Implications to Adaptation and Selection

dc.creatorShu, Xiaomei
dc.creatorSingh, Manavi
dc.creatorKarampudi, Naga Bhushana Rao
dc.creatorBridges, David F.
dc.creatorKitazumi, Ai
dc.creatorWu, Vivian C.H.
dc.creatorde los Reyes, Benildo G.
dc.date.accessioned2021-08-02T15:33:49Z
dc.date.available2021-08-02T15:33:49Z
dc.date.issued2020
dc.descriptionCopyright © 2020 Shu, Singh, Karampudi, Bridges, Kitazumi, Wu and De los Reyes. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.en_US
dc.description.abstractEscherichia coli serotype O157:H7 is one of the major agents of pathogen outbreaks associated with fresh fruits and vegetables. Gaseous chlorine dioxide (ClO2) has been reported to be an effective intervention to eliminate bacterial contamination on fresh produce. Although remarkable positive effects of low doses of ClO2 have been reported, the genetic regulatory machinery coordinating the mechanisms of xenobiotic effects and the potential bacterial adaptation remained unclear. This study examined the temporal transcriptome profiles of E. coli O157:H7 during exposure to different doses of ClO2 in order to elucidate the genetic mechanisms underlying bacterial survival under such harsh conditions. Dosages of 1 μg, 5 μg, and 10 μg ClO2 per gram of tomato fruits cause different effects with dose-by-time dynamics. The first hour of exposure to 1 μg and 5 μg ClO2 caused only partial killing with significant growth reduction starting at the second hour, and without further significant reduction at the third hour. However, 10 μg ClO2 exposure led to massive bacterial cell death at 1 h with further increase in cell death at 2 and 3 h. The first hour exposure to 1 μg ClO2 caused activation of primary defense and survival mechanisms. However, the defense response was attenuated during the second and third hours. Upon treatment with 5 μg ClO2, the transcriptional networks showed massive downregulation of pathogenesis and stress response genes at the first hour of exposure, with decreasing number of differentially expressed genes at the second and third hours. In contrast, more genes were further downregulated with exposure to 10 μg ClO2 at the first hour, with the number of both upregulated and downregulated genes significantly decreasing at the second hour. A total of 810 genes were uniquely upregulated at the third hour at 10 μg ClO2, suggesting that the potency of xenobiotic effects had led to potential adaptation. This study provides important knowledge on the possible selection of target molecules for eliminating bacterial contamination on fresh produce without overlooking potential risks of adaptation.en_US
dc.identifier.citationShu X, Singh M, Karampudi NBR, Bridges DF, Kitazumi A, Wu VCH and De los Reyes BG (2020) Xenobiotic Effects of Chlorine Dioxide to Escherichia coli O157:H7 on Non-host Tomato Environment Revealed by Transcriptional Network Modeling: Implications to Adaptation and Selection. Front. Microbiol. 11:1122. https://doi.org/10.3389/fmicb.2020.01122en_US
dc.identifier.urihttps://doi.org/10.3389/fmicb.2020.01122
dc.identifier.urihttps://hdl.handle.net/2346/87451
dc.language.isoengen_US
dc.subjectEscherichia colien_US
dc.subjectSolanum lycopersicumen_US
dc.subjectGaseous Chlorine Dioxideen_US
dc.subjectRNA-Seqen_US
dc.subjectTranscriptional Regulatory Networken_US
dc.subjectFunctional Co-Expression Modulesen_US
dc.subjectSupra-Optimal Effectsen_US
dc.titleXenobiotic Effects of Chlorine Dioxide to Escherichia coli O157:H7 on Non-host Tomato Environment Revealed by Transcriptional Network Modeling: Implications to Adaptation and Selectionen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
reyes_article.pdf
Size:
5.2 MB
Format:
Adobe Portable Document Format
Description:
Main article with TTU Libraries cover page

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.57 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections