Preliminary evidence that hydrostatic edema may contribute to the formation of diffuse alveolar damage in a holstein calf model [version 1; referees: 2 approved]

dc.creatorNeary, Joseph M. (TTU)
dc.creatorChurch, Dee (TTU)
dc.date.accessioned2023-08-24T18:00:15Z
dc.date.available2023-08-24T18:00:15Z
dc.date.issued2018
dc.description© 2018 Neary JM and Church D. cc-by
dc.description.abstractBackground: Two notable findings of clinically healthy feedlot cattle suggest they may have pulmonary hydrostatic edema during the finishing phase of production: increased pulmonary arterial wedge pressures and pulmonary venous hypertrophy. The goal of this study was to determine if increased pulmonary arterial wedge pressure (PAWP) in a Holstein calf could lead to diffuse alveolar damage consistent with the early, exudative phase of acute interstitial pneumonia of feedlot cattle. Methods: Six male Holstein dairy calves were given daily subcutaneous injections of the nonspecific ß-adrenergic agonist isoprenaline (10 mg/kg/d), to induce left ventricular diastolic dysfunction, or sterile water for 14 days. On Day 14, pulmonary arterial pressures and wedge pressures were measured, echocardiography performed, and the ratio of mitral valve flow velocity (E) to septal lengthening velocity (e’) calculated. Calves were euthanized on Day 15 and lung lesions semi-quantitatively scored. Results: Mean PAWP was 12 ± 1 mm Hg in calves that received isoprenaline and 7 ± 1 mm Hg in controls (P = 0.01). Calves that received isoprenaline tended to have greater relative wall thickness than control calves (P = 0.15) and greater E/e’ ratios (P = 0.16), suggestive of concentric hypertrophy and diastolic dysfunction, respectively. Calves that received isoprenaline also tended to have a left ventricle and interventricular septum that was 29 ± 10 g heavier than control calves (P = 0.10) when controlling for body mass. Hyaline membranes, the hallmark feature of diffuse alveolar damage, were evident in lung sections from all calves that received isoprenaline but none of the controls. Conclusions: Consistent with prior pathological and physiological studies of feedlot cattle, this study provides preliminary evidence that cattle presenting with clinical signs and pathology consistent with early stage acute interstitial pneumonia could be attributable to hydrostatic edema associated with left ventricular failure.
dc.identifier.citationNeary, J.M., & Church, D.. 2018. Preliminary evidence that hydrostatic edema may contribute to the formation of diffuse alveolar damage in a holstein calf model [version 1; referees: 2 approved]. F1000Research, 7. https://doi.org/10.12688/f1000research.14153.1
dc.identifier.urihttps://doi.org/10.12688/f1000research.14153.1
dc.identifier.urihttps://hdl.handle.net/2346/95838
dc.language.isoeng
dc.subjectAcute respiratory distress syndrome
dc.subjectCongestive heart failure
dc.subjectHypertension
dc.subjectLeft ventricle
dc.subjectPneumonia
dc.titlePreliminary evidence that hydrostatic edema may contribute to the formation of diffuse alveolar damage in a holstein calf model [version 1; referees: 2 approved]
dc.typeArticle

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Main article with TTU Libraries cover page.pdf
Size:
1.04 MB
Format:
Adobe Portable Document Format

Collections