Random perturbation of a self-adjoint operator with a multiple eigenvalue

dc.contributor.committeeChairRuymgaart, Frits
dc.contributor.committeeMemberGilliam, David S.
dc.contributor.committeeMemberTrindade, A. Alexandre
dc.creatorGaines, George
dc.date.available2012-06-25T20:55:12Z
dc.date.issued2012-05
dc.degree.departmentMathematics and Statistics
dc.description.abstractWe first consider a bounded self-adjoint operator on a Hilbert space with a multiple eigenvalue as its largest eigenvalue. We perturb the operator and study the resulting cluster of eigenvalues of the perturbed operator. We study the convergence of the scattered eigenvalues to the original. We then do computer simulations. We also show an approximation for Brownian motion.
dc.format.mimetypeapplication/pdf
dc.identifier.urihttp://hdl.handle.net/2346/45269
dc.language.isoeng
dc.rights.availabilityUnrestricted.
dc.subjectHilbert space
dc.subjectEigenvalues
dc.subjectAnalysis of covariance
dc.subjectBrownian motion processes
dc.titleRandom perturbation of a self-adjoint operator with a multiple eigenvalue
dc.typeDissertation
thesis.degree.departmentMathematics and Statistics
thesis.degree.disciplineMathematics
thesis.degree.grantorTexas Tech University
thesis.degree.levelDoctoral
thesis.degree.nameDoctor of Philosophy

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
GAINES-DISSERTATION.pdf
Size:
632.47 KB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: