Mixed Effects of Habitat Degradation and Resources on Hantaviruses in Sympatric Wild Rodent Reservoirs within a Neotropical Forest

Abstract

Understanding the ecology of rodent-borne hantaviruses is critical to assessing the risk of spillover to humans. Longitudinal surveys have suggested that hantaviral prevalence in a given host population is tightly linked to rodent ecology and correlates with changes in the species composition of a rodent community over time and/or habitat composition. We tested two hypotheses to identify whether resource addition and/or habitat composition may affect hantavirus prevalence among two sympatric reservoir hosts in a neotropical forest: (i) increased food resources will alter the rodent community and thus hantaviral prevalence; and (ii) host abundance and viral seroprevalence will be associated with habitat composition. We established a baseline of rodent–virus prevalence in three grid pairs of distinct habitat compositions and subjected one grid of each pair to resource augmentation. Increased rodent species diversity was observed on grids where food was added versus untreated control grids during the first post-treatment sampling session. Resource augmentation changed species community composition, yet it did not affect the prevalence of hantavirus in the host population over time, nor was there evidence of a dilution effect. Secondly, we show that the prevalence of the virus in the respective reservoir hosts was associated with habitat composition at two spatial levels, independent of resource addition, supporting previous findings that habitat composition is a primary driver of the prevalence of hantaviruses in the neotropics.

Description

Attribution 4.0 International (CC BY 4.0)

Keywords

dilution effect, hantaviruses, interior Atlantic Forest, resource augmentation, species diversity

Citation

Camp JV, Spruill-Harrell B, Owen RD, Solà-Riera C, Williams EP, Eastwood G, Sawyer AM, Jonsson CB. Mixed Effects of Habitat Degradation and Resources on Hantaviruses in Sympatric Wild Rodent Reservoirs within a Neotropical Forest. Viruses. 2021; 13(1):85. https://doi.org/10.3390/v13010085

Collections