The NANOGrav 15yr Data Set: Search for Signals from New Physics

Abstract

The 15 yr pulsar timing data set collected by the North American Nanohertz Observatory for Gravitational Waves (NANOGrav) shows positive evidence for the presence of a low-frequency gravitational-wave (GW) background. In this paper, we investigate potential cosmological interpretations of this signal, specifically cosmic inflation, scalar-induced GWs, first-order phase transitions, cosmic strings, and domain walls. We find that, with the exception of stable cosmic strings of field theory origin, all these models can reproduce the observed signal. When compared to the standard interpretation in terms of inspiraling supermassive black hole binaries (SMBHBs), many cosmological models seem to provide a better fit resulting in Bayes factors in the range from 10 to 100. However, these results strongly depend on modeling assumptions about the cosmic SMBHB population and, at this stage, should not be regarded as evidence for new physics. Furthermore, we identify excluded parameter regions where the predicted GW signal from cosmological sources significantly exceeds the NANOGrav signal. These parameter constraints are independent of the origin of the NANOGrav signal and illustrate how pulsar timing data provide a new way to constrain the parameter space of these models. Finally, we search for deterministic signals produced by models of ultralight dark matter (ULDM) and dark matter substructures in the Milky Way. We find no evidence for either of these signals and thus report updated constraints on these models. In the case of ULDM, these constraints outperform torsion balance and atomic clock constraints for ULDM coupled to electrons, muons, or gluons.

Description

© 2023. The Author(s). Published by the American Astronomical Society. cc-by

Rights

Availability

Keywords

Citation

Afzal, A., Agazie, G., Anumarlapudi, A., Archibald, A.M., Arzoumanian, Z., Baker, P.T., Becsy, B., Blanco-Pillado, J.J., Blecha, L., Boddy, K.K., Brazier, A., Brook, P.R., Burke-Spolaor, S., Burnette, R., Case, R., Charisi, M., Chatterjee, S., Chatziioannou, K., Cheeseboro, B.D., . . . Zurek, K.M.. 2023. The NANOGrav 15yr Data Set: Search for Signals from New Physics. Astrophysical Journal Letters, 951(1). https://doi.org/10.3847/2041-8213/acdc91

Collections