
TIME-SERIES ANALYSIS USING ORTHOGONAL POLYNOMIALS 

by 

VINAY ACHALANAND VITTAL, B.E. 

A THESIS 

IN 

COMPUTER SCIENCE 

Submitted to the Graduate Faculty 
of Texas Tech University in 

Partial Fulfillment of 
the Requirements for 

the Degree of 

MASTER OF SCIENCE 

Approved 



ACKNOWLEDGEMENTS 

1 would like to express my grateful appreciation to several people for their 

p /2_ assistance in this research. Dr. W. J. B. Oldham, the chairperson of the committee, 

provided me with excellent guidance and all the necessary input required in making 

this research endeavor a very fruitfiil one. His comments and suggestions were very 

valuable for the research. 

My sincere thanks also go to Dr. Larry Pyeatt for his support and suggestions 

during the course of this research work. Thanks to Dr. Dan Cooke for his guidance. 

I am grateful to all my friends at Texas Tech University, Lubbock, for being the 

surrogate family during the many years I stayed there and for their continued moral 

support there after. 

11 



TABLE OF CONTENTS 

ACKNOWLEDGEMENTS ii 

ABSTRACT v 

LIST OF FIGURES vi 

CHAPTER 

I. INTRODUCTION 1 

II. TIME-SERIES ANALYSIS 4 

2.1 The ARMA Model 4 

2.2 Linear Time-Series 4 

2.3 Linear Regression 5 

2.4 Chaotic Time-Series 8 

2.5 Maps 10 

III. LITERATURE REVIEW 11 

3.1 Signals, Dynamical Systems and Chaos 11 

3.2 Attractors 13 

3.3 LorenzMap 16 

3.3.1 Lyapimov Exponent of a Lorenz Attractor 20 

3.4 Fractals and Fractal Dimensions 25 

111 



3.4.1 Dimensions 25 

3.4.2 Topological Dimension 26 

3.4.3 Fractal Dimension 26 

3.4.4 Lyapunov Dimension 27 

IV. POLYNOMIAL-BASED RECONSTRUCTION 29 

4.1 Introduction 29 

4.2 Measure-Based Approach 30 

V. RESULTS 34 

5.1 Case 1 35 

5.2 Case 2 39 

5.3 Case 3 43 

VI. CONCLUSION 49 

BIBLIOGRAPHY 50 

IV 



ABSTRACT 

Advances in the study of non-linear dynamics have encouraged the constmction 

of models and simulators of non-linear time-series. Researchers in the field of both 

science and statistics have come up with innovative methods that are usefiil in 

extracting information from systems that exhibit non-linear dynamics. Time-series, as 

we all know, is the sequence x^,X2,x^,...,x,, observed in time. Time-series analysis 

depends on the fact that data points taken over time may have intemal stmcture such 

as autocorrelation, trend or seasonal variation. It is these properties that make model 

constmction possible. 

As part of this research, the Measure Based approach to reconstmction, proposed 

by Giona [1], is investigated. This method is based on the Fourier expansion of the 

polynomial system 11 orthonormal to the invariant measures. Programs have been 

written based on the MB approach and these programs were tested on various one 

dimensional time-series like the sine map, the tent map and the logistic map. This 

approach to reconstmction fiimishes good results when applied to chaotic one 

dimensional time-series. 
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CHAPTER I 

INTRODUCTION 

Time-series can be defined as an ordered sequence of values of a variable taken at 

various intervals of time. The goal of time-series analysis is to understand the 

underiying mechanism that leads to the observed data and use this set of 'historical 

values' to forecast future values of the series. The underlying mechanism of time-

series is affected by what we can call 'unknowns,' and hence we can view this 

mechanism as being probabilistic and stochastic. The state of the system at some time 

Ms an instantaneous description of the system, which is sufficient to predict its fiiture 

state s, without knowledge of states prior to t. The space of possible system states is 

called the state space of the dynamical system. 

The three types of time-series effects having to do with age, period and cohort are 

as follows: 

• Age effects: These are effects related to aging or the life cycle. 

• Period effects: These effect all cohorts in a given historical set of period. 

• Cohort effect: These effects reflect the unique reaction of a cohort to a historical 

event. 

Stationarity of the time-series is a property that makes the statistical values such as mean, 

variance, and autocorrelation constant over time. Statistical forecasting methods assume 

that the time-series can be made stationary by applying mathematical transformations. A 

stationaryzed time-series is easy to predict since its statistical properties will be the same 



in the fiiture as they were in the past. Stationarity can be achieved by the method of 

differencing. There are various techniques for analyzing time-series. All of them fall 

generally into three categories: 

• Statistics: notably auto-regressive moving average (ARMA) and correlational 

techniques. 

• Filters: e.g., Kalman filters. 

• Models: constmcted to fit the problem at hand. 

Our goal is to constmct a model of the system, with the knowledge of the time-

series. Here we make an assumption that this model accurately describes the behavior of 

the physical process. A leaming system attempts to infer a model of the actual system. 

Time-series analysis depends on the fact that data points taken over time may have 

intemal stmcture such as autocorrelation, trend or seasonal variation. Time-series 

forecasting is possible by assuming that a time-series is a combination of a pattem and 

some random error. We then separate the pattern from the error by understanding the 

pattem's trend. In a time-series that contains non-random behavior it is likely that a 

particular item in the time-series is related to other items in the same time-series in some 

fashion. If there is a consistent relationship between entries in the entries, e.g., the 3' and 

the 5^, the 10* and the 20*, etc., then it is possible to use the relationship to forecast 

future values of the time-series. Hence we can say that the time-series has the ability to 

forecast itself because of autocorrelation among values within the series. In the next 

chapter, we discuss some methods of modeling time-series. In mathematics, chaos has an 

all together different meaning when compared to chaos in the general sense. Often, to 



differentiate this meaning with the general meaning of chaos, mathematicians and 

physicists use the term 'deterministic chaos,' i.e., there is no randomness involved. This 

means that the fliture is absolutely determined by the present. The phrase 'chaotic 

motion' has nothing to do with whether or not the dynamics of a physical system is 

frenzied or random. Rather, chaotic systems are deterministic and appear to be smooth 

and ordered. The issue of whether or not it is possible to make accurate long-term 

predictions about the behavior of the physical system has been the topic of numerous 

researches. 



CHAPTER II 

TIME-SERIES ANALYSIS 

2.1 The ARMA Model 

In statistics, the most widely used technique for modeling time-series is the Box-

Jenkins method. This method is also known as the ARMA model which stands for Auto 

Regressive Moving Average model and is a combination of AR and MA models. The 

general form of an AR model is an AR(p): 

X, = <Z>,X,_i + (f>2X,_2 + ... + (^pX,_p + £„ 

If /7 = I, then the above model is AR(1) which is the simplest AR model and x depends 

on the value of its immediate past. The general form of MA model is MA(ci): 

X, - £ , - 0x£,_^ - 02£,_x -... - OgS,-g-

When q-\, the above model is MA(I) which is the simplest model and x depends on 

the value of the immediate past error, which is known at time /. In both these models the 

value of 0 lies between ±1. Now the general form of the ARMA model is given by 

ARMA(p,q): 

X, - 0xX,_x - ^2^,-2 ~ ••• ~ ^p^t - P - ^ , ~ ^ l ^ M ~ ^2^r-2 ~ ••• ~ ^q^l-q' 

2.2 Linear Time-Series 

For an autonomous linear system in n dimensions, we have n polynomial 

equations: 

u(t) = [u^(t),U2(t),u^(t),...,u„(t)] 



that is, 

du(t) 

dt 

where A is a constant nxn matrix. 

= A • u(t) 

Given such a system of polynomial equations, the roots can be found by 

determining the eigen values of the matrix. In case the eigen value has a positive real 

part, this means that the system is not govemed by linear dynamics and we must rely on 

non-linear evolution equations. Due to the fact that the system is non-linear, the tools of 

Fourier analysis are not very helpful. Fourier transforms of a linear system changes the 

set of differential equations into an algebraic problem that can be solved as described 

above. Fourier analysis of non-linear systems transforms differential equations in the time 

domain into integral equations in the frequency domain, which is not a big improvement. 

2.3 Linear Regression 

Regression is a modeling method of obtaining a best fit for the given set of data. 

Fitting the best straight line for the given data is knovm as linear regression [9]. If the 

data points are given by (Xx,yx),ix2^y2)XXi,y'i),—,{x„,y„), where x is the independent 

variable and y is the dependent variable, then the equation of the straight line can be 

expressed as 



where ao and a/ are the constants to be determined. This linear equation is only an 

approximation function, thus there exists an error between the model and the data points 

(true values). The error at the data point (xi, yi) is given by 

The most common method used to fit the best straight line is the least squares method. 

We formulate the sum of squares of the errors (S) as 

n ri 

/=1 (=1 

and minimize S with respect to the parameters ao and aj. In order to minimize S with 

respect to ao and aj, we differentiate S with respect to ao and aj and arrive at two 

simultaneous linear equations in the unknowns ao and aj as. 

/ n \ 

a^(n) + a, E^/ =Yy> 
V '=1 J /=i 

( " ^ ( " \ " 
«o Z^' +«i E^' ^ll^>yi 

V/=i ) \i=\ J .=1 

These equations can be solved for the unknowns ao and a; using Cramer's mle (see 

Figure 2.1) [9]. 
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Figure 2.1: Least squares straight-line fit 



2.4 Chaotic Time-Series 

Chaos theory can be defined as a "qualitative study of unstable aperiodic behavior 

in deterministic nonlinear dynamical systems" [10]. A dynamical system is a simplified 

model of the physical system. The aperiodic behavior is simply the behavior that occurs 

when the variables describing the state of the system do not undergo a regular repetition 

of values. Chaos describes irregular and highly complex behavior of dynamical systems 

in time and space. Such systems are strictly govemed by mathematical algorithms, but 

are, however, unpredictable due to sensitivity to initial conditions. Aperiodic systems to 

not repeat themselves and they continue to manifest even small perturbations. So, 

although theoretically it is possible to predict how the system will behave accurately, in 

practice it is difficult to find the initial starting point of the system accurately enough to 

be able to predict what will happen in the fliture beyond a short period of time. Small 

errors in measurements eventually add up to a big discrepancy between calculated and 

observed behavior. Chaotic systems have their dynamical variables lying on a strange 

attractor. Strange attractors are discussed in Chapter III. 

Given below is an example of chaotic behavior in numbers. Consider the iterative 

fiinction 

X , —2x — 1 
n+l ^-^n 

Iterate this function with a starting value for x between 0 and 1. Choosing a starting 

value of 0.75 will produce a graph as shown in the figure in blue. Choosing a number 



Figure 2.2: The butterfly effect 



even as close as 0.74999 will produce a graph that is similar at first to the previous graph, 

but then becomes very different, as seen in Figure 2.2. 

2.5 Maps 

A "map" is any mathematical transformation that is applied over and over again 

in a sequence. A quadratic recurrence equation is a recurrence equation on a sequence of 

numbers {x„} expressing x„ as a second degree polynomial in x^ with k<n. A 

quadratic recurrence equation of the form 

x„=al,+bx„_,+c 

in which no cross terms are present is known as a quadratic map. 

Examples of 1-dimensional maps are Quadratic (Logistic) map. Sine map. Tent 

map. Power map. Circle map and Shift map. Examples of 2-dimensional maps are Henon 

map. Circle map. Duffing map. Baker's map, Kaplan-Yorke map. Standard map, 

Grebogi-Ott-Yorke map and Poincare map [11]. 

10 



CHAPTER III 

LITERATURE REVIEW 

3.1 Signals. Dynamical System and Chaos 

Analysis of time-series from a physical system assumes that a dynamical system 

in the form of a differential equation is responsible for the observations [2]. For a 

continuous time-series, we assume that there are / ordinary differential equations for 

variables 

u(t) = [Ux(y),U2(t),...,u^(t)], 

^ = G(u(t)) 
at 

where the vector field G(u) is taken to be continuous in its variables and also to be 

differentiable. When time is discrete, as is the situation when observations are sampled at 

regular intervals of time, the evolution is given by a map from vectors in R^ to other 

vectors in R^ , each labeled by a discrete time: 

u(n) = u(to+nT^) 

u(n +1) = F(u(n)), 

where TS is the period. The continuous and discrete time-series of dynamics can be 

connected by thinking of the time derivatives as approximated by 

du(t) _̂ ̂ (̂ 0 + (» + l ) r j - u(t^ + nT^) 

dt T^ 

which would give 

11 



F(u(n))^u(n) + Tfi(u(n)). 

Sampling continuous dynamics by finding intersections with a hyperplane in the /-

dimensional space also gives rise to discrete dynamics. This method of Pouicare sections 

leads to an ( / -1) -dimensional discrete system. This is, however, not easily related to 

the continuous system behind it in an analytical sense. The number of degrees of freedom 

or the dimension of the state space of a dynamical system is the number of first order 

differential equations required to describe the evolution of the system. Partial differential 

equations generalize the number of degrees of freedom from a finite number, / to a 

vector 

X — \X^,X2,X^,...,Xj^) . 

For a field with K components 

u(x, t) = [M, (X, t), Uj (x, t),..., Uf. (x, t)], 

we write the differential equation as 

M ^ = G(«(x,0) 
dt 

and both x and / are now continuous and discrete. Here, the dynamics of fields differ 

from that of lower dimensional dynamical systems in that the number of degrees of 

freedom has become continuous. 

The vector field F(u) has parameters that reflect the external settings of force, 

frequencies, boundary conditions and physical properties of the system. In a non linear 

circuit, these parameters would include the amplittide and frequency of any driving 

12 



voltage or current, the resistance or the capacitance or the inductance of any lumped 

linear element and IV (ampere-voltage) or the characteristics of any non linear elements. 

The dynamical system 

u(n + 1) = F(u(n)) 

is generally not volume preserving in /-dimensional space. When evolving from a 

volume of points d^u(n +1) the volume changes by the determinant of the Jacobian 

DF(u) = det 
dF(u) 

du 

When this Jacobian is 1, the phase space volume remains constant under the evolution of 

the system. Generally the determinant of the Jacobian is less than xmity, which means that 

the volumes in phase space shrink as the system evolves. 

As the physical parameters in the vector field are varied, the behavior of u(t) or 

u(n), considered as an initial-value problem starting from W(̂ Q) or M(«O) > will change in 

detail as r or « becomes large. Some of these changes are smooth and preserve the 

geometry of the set of points in R^ visited by the dynamics. Some changes reflect a 

sudden alteration in the qualitative behavior of the system. 

3.2 Attractors 

An attractor is a set of states, towards which neighboring states in a given basin of 

attraction asymptotically approach in the course of dynamic evolution [12]. These states 

13 



are invariant under the dynamics of the evolution. An attractor can also be defined as the 

smallest unit which cannot be decomposed into two or more attractors with distinct basin 

of attractions. The properties of attractors can be listed as: 

• The set is invariant. 

• This set has a basin of attraction. 

• This set is minimal. 

An attractor is called a strange attractor if it exhibits sensitive dependence on initial 

conditions. Since a dynamical system may have multiple attractors each with its own 

basin of attraction, the above restrictions have to be applied. Since the motion of 

conservative systems is periodic, they do not have attractors. For dissipative dynamical 

systems the volumes shrink exponentially, so attractors have 0 volumes in ^-dimensional 

phase space. A basin of attraction is a set of points in the space of a dynamical system 

such that initial conditions in this set dynamically evolve to a particular attractor. 

Mathematically, a strange attractor is an attracting set with zero measure in the 

embedding phase space and having fractal dimensions. Trajectories within a strange 

attractor appear to skip around randomly. A selection of strange attractors for a general 

quadratic map is given below. 

^„+i = «i + «2^. + «3^« + «4̂ «>̂ « + «5>'„ + ^5y„ + ^(,yl 

14 
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Figure 3.1: Strange Attractors 
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where the letters^ to 7 stand for coefficients of the quadratic from -1.2 to 1.2 in steps of 

0.1 [12] (see Figure 3.1). These represent a small selection of the approximately 1.6% of 

all possible 25^^ = 6 * lO'^ such maps that are chaotic. 

3.3 Lorenz Map 

Perhaps one of the most widely studied attractors in the field of chaos is the 

Lorenz Attiractor. Edward Lorenz, who was looking at a way to model the chaotic 

behavior of a gaseous system, took three simple equations from fluid dynamics and 

simplified them to get a three dimensional system: 

= a*(y-x) 
dt 

'^y * * 
— = r* X -y-x* z 
dt 

— = X* y-b* z 
dt 

(T in the first equation above is the 'Prandtl number' which is the ratio of the fluid 

viscosity of a substance to its thermal conductivity. Lorenz used the value 10 for the 

constant, as one does not have to know its exact value. The value r in the second equation 

represents the difference in the temperature between the top and the bottom of the 

gaseous system. The variable b is the ratio of the width to height of the container holding 

the gas. Lorenz chose 8/3 for this variable. The resultant x in the equation represents the 

rate of rotation if the cylinder, ;; represents the difference in the temperatures at the 

16 



opposite ends of the cylinder and z represents the deviation of the system from a linear, 

vertical graphed line representing temperature. 

The important features of the equations given above are as follows: 

• They are autonomous - meaning, time does not explicitly appear on the right hand 

side of the equations. 

• They involve only first-order time derivatives so that the evolution depends only 

on the instantaneous values of (x, y, z). 

• They are non-linear: through the quadratic terms xz and xy in the second and the 

third equations. 

dx 
• They are dissipative - meaning, the diagonal terms such as — = -ox correspond 

dt 

to decaying motion, but more systematically we see that volumes in phase space 

shrink in the dynamics. 
• The solutions are bounded. 

By plotting the three differential equations on a three-dimensional plane, we would not 

get a geometric stmcture or even a complex curve, but, however, we would observe a 

weaving object known as the Lorenz Attractor. Since the system never repeats itself, the 

trajectory never intersects itself and it loops forever. A computer-generated Lorenz 

Attractor is shovm in Figure 3.2 [15]. 

17 
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The physically interesting behavior of the Lorenz system can be seen as r is 

varied, since this represents the variations in the external forces on the 'atmosphere'. The 

derivations of the three differential equations show that they provide a representation of 

thermal convection only near r « 1, but many researchers have adopted them as a model 

of low dimensional chaotic behavior. When r is less than unity, all orbits tend to the 

fixed point of the vector field 

G^(x,y,z) = -ax + oy, 

G2 (x, y, z) = -y-\-rx- xz, 

G^(x,y,z) = -bz + xy, 

at (x, y, z) = (0,0,0). This represents steady thermal conduction. As r increases beyond 

unity, the state (0,0,0) is linearly unstable and the vector field has two symmetric linearly 

stable fixed points at 

(x±,y±,z) = ( ± X r - I ) , ± V 6 ( r - l ) , r - 1 ) . 

For all r < 1, the geometry of the time-asymptotic state of the system is the same, 

namely, all initial conditions tend to (0,0,0). For r > 1 and until r reaches 

_ cr(cr + b + 3) 

'"' (a-b-l) ' 

orbits end up at (x±,y±,z) depending on the value of (x(0),y(0),z(0)). The geometry of 

the final state of the orbits is the same, namely, all voliunes of initial conditions shrink to 

zero-dimensional objects. The zero-dimensional limit sets change with parameters, but 

retain their geometrical nature until r = r^. When r>r^, the situation changes 
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dramatically. The two fixed points of the vector field at (x±, y±, z) become linearly 

unstable and no stable fixed points remain. As r increases from r^, the time-asysmptotic 

state emerging from an initial condition will either perform irregular motion 

characterized by a broad Fourier Spectrum or undergo periodic motion. 

3.3.1 Lyapimov Exponent of a Lorenz Attractor 

The usual way of testing for chaos is to calculate the largest Lyapunov 

characteristic exponent or simply the Lyapunov exponent. A positive largest Lyapunov 

exponent indicates chaos. The general way to test for chaos is to follow two nearby orbits 

and to calculate their average logarithmic rate of separation. When the orbits get too far 

apart, one of the orbits is moved to the vicinity of the other along the line of separation. J. 

C. Sprott [11] has proposed the following method for the calculation of the largest 

Lyapunov exponents: 

• Start with any initial point in the basin of attraction: 

A better choice would be to start with a point known to be on the attractor. In this 

case step 2 can be omitted. 

• Iterate until the orbit is on the attractor: 

This requires some knowledge about the system under study. For most systems it 

is safe to iterate a few hundred times and assume that it is sufficient. 

• Select almost any nearby point separated by a distance d^: 

20 



A good choice for d^ would be one that is about 1000 times larger than the 

precision of the floating point numbers being used. 

Advance both orbits one time and calculate the new separation t/,: 

This separation is calculated from the sum of the squares of the distances in each 

variable. For a two-dimensional system with variables x and y, the separation is 

given by 

d = i(x^-x,f+(y^-y,f)~' 

The subscripts a and b the two orbits, respectively: 

• Evaluate log do 

For maps, usually natural logarithm base-e is used. Since Lyapunov exponent is 

generally quoted in bits per iteration, one will have to use base-2. 

Readjust one orbit so its separation is d^ in the same direction as if,: 

This is the most difficult and error prone step. For example, in 2-dimensions, 

suppose orbit b is the one to be adjusted and its value after one iteration is 

(^b\^yb\) • It would then be reinitialized to 

•''•AO ~ 

^a\ "*" "o(-''Al ^a\) 

d, 

and 

„ _yaX+d,(y,x-yax) 
ybo ~ J 
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The figure is as shown in the next page. 

Repeat steps 4-6 many times and calculate the average of step 5. 

Figure 3.3: Calculating the largest Lyapunov exponent 
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Lorenz used the parameters p = \0, r = 28 and 6 = 8/3 for which the trajectories 

produced a strange attractor. However, in all published papers of Lorenz, the calculation 

of the largest Lyapimov exponent has usually used the values p = l6, r = 45.92 and 

b = 4. The Lyapunov exponents for this in base-2 are (2.16,0,-32.4). The exponents for 

a flow are expressed in base-e, in which case the values are (1.5,0,-22.46). For this, one 

of the exponents must be 0 and the siun of - p-\-b should be approximately 21. 

Figure 3.4 [2] shows the time-series produced by the Lorenz equations with parameters 

A-= 45.92, 6 = 4.0 and o- = 16.0. 
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Figure 3.4: Lorenz attractor 
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