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ABSTRACT 

A cattle feedlot lagoon effluent was used in both a batch and continuous flow system 

to determine the capability of an algae species, P. bohneri^ to remove ammonia-nitrogen 

fi-om the effluent. In the batch reactors containing P. bohneri, an initial ammonia-nitrogen 

concentration of 66 mg/L was reduced to below 0.5 mg/L within 3 days. The initial 

chlorophyll-a concentration of 500 ng/L increased to 2,000 ng/L within 6 days. In the 

continuous flow non-baffled reactor, the influent ammonia-nitrogen of 70 mg/L decreased 

to below 0.3 mg/L at the hydraulic retention time (HRT) of 4 days. In the continuous flow 

baffled reactor, the effluent ammonia-nitrogen concentration was 0.1 mg/L at the HRT of 

4 days. In both the non-baffled and baffled reactors, the ammonia-nitrogen concentrations 

in the effluent were below 0.1 mg/L at the HRTs of 8 and 12 days. The non-baffled 

reactor had the maximum chlorophyll-a concentration of 4,153 |ig/L at the HRT of 12 

days, while the highest chlorophyll-a concentration in the baffled reactor was 2,695 |ig/L 

at the HRT of 8 days. The non-baffled reactor had the highest nitrogen utilization rate 

(3.68 mg/L-day) by the P. bohneri culture at the HRT of 8 days. The baffles in the 

continuous flow system contributed to the lower effluent substrate concentration, but 

caused the rapid cell wash-out. Therefore, the cell production in the baffled reactor was 

lower than that in the non-baffled reactor. 

The algae production and the substrate removal models were developed on the basis of 

the relationship between microbial growth, substrate utilization, and a finite volume 

occupied by microbes. In the batch reactor study, the equation of predicted algal 

production fit measured data with an R value of 0.86 and was highly significant (a = 

0.001). For the ammonia-nitrogen removal by the P. bohneri culture, the measured versus 

predicted resuhs were highly significant (a = 0.001) with an R̂  value of 0.98. In the 

continuous flow, non-baffled reactor, the developed model predicted measured algal cell 

concentration with respect to hydraulic retention time with an R̂  of 0.98 (a = 0.01). The 

experimental data and predicted results for the specific nitrogen utilization rate by P. 

bohneri agreed well (R^ = 0.94, a = 0.01) in the continuous flow, non-baffled system. 
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CHAPTER I 

INTRODUCTION 

The modem strategy of wastewater treatment is moving toward systems of wastewater 

recycle to reduce the treatment expenses and the amount of sludge. There are many ways 

to recycle wastewater and to reuse the valuable materials that are often available in it. 

Wastewater fi*om animal product can be one of the most appropriate sources for recycling 

for animal feed because it contains an abundant amount of nutrients (i.e., nitrogen, 

phosphorus, and other organic and inorganic materials) along with relatively few toxic 

substances. Algae, as an intermediate, is considered to be an applicable organism to 

convert waste into a valuable by-product which can be utilized as an animal or fish feed 

(Becker, 1988; Mokady etal., 1980), pharmaceuticals (Chapman and Chapman, 1980), 

biofertilizer (Venkataraman, 1986), or resource of chemicals (Cohen, 1986). Utilization of 

algae has potential as well as application for treating industrial and municipal wastewater 

sources. One approach to recycling is to integrate wastewater treatment with fish or 

aquatic plant production. Treatment processes will be necessary to remove 

environmentally harmful substances such as ammonia fi^om cattle wastewater if waters are 

used ultimately to grow fish. 

Ammonia is one of the most important pollutants in the aquatic environment because 

of its highly toxic nature to aquatic animals and because it also is a cause for 

eutrophication in surface water. Even relatively low concentrations of ammonia can be 

toxic to fish and other aquatic organisms. Gary and Sam (1985) demonstrated that the 

different species offish have their own different tolerance level for ammonia and have 

listed the toxic level of ammonia for several species. From the data, the limiting ammonia 

level can be considered as less than 0.5 mg/L ammonia-nitrogen for some commercial fish 

production in a wastewater reuse system. 

Ammonia enters natural water systems fi-om several sources including industrial 

wastes, sewage effluents, and agricultural discharges. The EPA (1975) reported that the 

ammonia-nitrogen concentration in feedlot wastewater might reach 300 mg/L. According 

1 



2 
to Gebriel (1994), ammonia-nitrogen concentrations in the lagoon effluent fi'om Lubbock 

Feedlot in Lubbock, Texas, was approximately 270 mg/L. Municipal wastewater typically 

does not contain amounts of ammonia-nitrogen equal to that found in cattle feedlot 

wastewater. In Reeves's (1972) report, the ammonia-nitrogen concentration in raw 

municipal wastewater generally ranged fi-om 10 to 50 mg/L. The EPA (1973) reported 

that primary treatment processes in municipal wastewater plants removed little ammonia-

nitrogen. Primary sedimentation just acts to remove a portion of the particulate organic 

nitrogen. In secondary treatment processes, ammonia-nitrogen conversion is slow in 

comparison to carbonaceous oxidation because most of microorganisms are composed of 

heterotrophic bacteria that are more competitive than the nitrifiers. Most ammonia-

nitrogen removal is obtained by assimilation into cells formed in the biological processes 

of the secondary treatment system. Unless a tertiary treatment process exists, a large 

portion of the ammonia-nitrogen in raw wastewater is discharged as is into the receiving 

stream. 

There are several ammonia-nitrogen removal processes such as nitrification-

denitrification, chlorination, ion exchange, and ammonia stripping methods. Economically, 

nitrification-denitrification has been the dominant ammonia-nitrogen removal process in 

wastewater treatment plants. This process provides a high removal efiflciency for 

ammonia-nitrogen from an effluent from a secondary treatment process. However, the 

nitrification-denitrification process is not a cost-effective method to remove ammonia-

nitrogen from feedlot wastewater. Aeration itself is a costly process. Secondly, a relatively 

high concentration of carbonaceous organic material in the lagoon water provides less 

competitive environmental conditions for growing autotrophic nitrification-bacteria due to 

the high growth rate of heterotrophic bacteria. Thereby, nitrification takes a longer 

processing time to reduce ammonia to a certain level. 

Algae have the ability to take up ammonia-nitrogen from the water regardless of the 

oxygen level and the concentration of carbonaceous organics. Ammonia-nitrogen is a 

primary nitrogen source for many algal species along with nitrate-nitrogen or urea. The 

number of algae can explosively increase under the appropriate conditions of light. 



3 
temperature, and nutrients. During blooms, algae's ability to take up ammonia-nitrogen is 

tremendous. This capability can be applied to remove ammonia-nitrogen in a wastewater 

treatment system. 

In the 1950's, Buriew (1953) and his group (Carnegie Institute of Washington) studied 

large-scale algal cultures that dealt with the basic photosynthetic properties of microalgae 

and their therapeutic, antibiotic, and toxicological properties. Similarly, Gotaas and 

Oswald (1951) were interested in the role of microalgae (algal symbiosis) in wastewater 

treatment ponds. In the 1970's, Oswald (1972) and Shelef e/ al (1977) successfully 

utilized an algal culture in a wastewater treatment pond system. Since then, many studies 

have been conducted to find the nutritional and agriculture application for microalgae, to 

determine the harvesting method in an algal wastewater pond system, and to use algae as a 

source of products for the chemical industry. 

From the late 1980's, several researchers (Talbot and de la Noue, 1988; Pouliot et al, 

1989) have investigated the application of a filamentous cyanobacterium, Phormidium 

bohneri to wastewater treatment. In comparison with other algae such as Scenedesmus, 

Oocystis, and Chlorella that are the dominant species in the stabilization pond system, P. 

bohneri has two important characteristics for wastewater treatment. First, P. bohneri has 

the ability to self-aggregate which allows for easy removal by sedimentation. Second, P. 

bohneri is resistant to contamination by other algae species (Pouliot et al, 1989). Talbot 

and de la Noue (1993) reported that cells of P. bohneri have a high protein content like 

Spirulina and Chlorella species. This high percentage of protein content of P. bohneri 

shows the potential of algae as a nutrient source. However, the application of P. bohneri 

in a pond system has a limitation because of its high settling velocity and susceptibility to 

changing outdoor conditions such as temperature. The P. bohneri culture is not suitable 

for use in a pond system because the sinking ability of this species does not promote good 

contact with the nutrients in wastewater. Therefore, an alternative treatment method 

should be considered to provide the needed turbulence for mixing the algae throughout the 

system. A concentrated algae system needs a much smaller volume than a pond system. 

This small volume system tolerates the changes in outdoor conditions as well as saves 
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power for mixing. The concentrated algal culture system also can reduce the time period 

of ammonia-nitrogen removal. This bioreactor system with P. bohneri culture in a green 

house is considered to be one approach for removing nutrients and for mass algae 

production. 
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OBJECTIVES 

Although feedlot lagoon effluent has been treated using primary treatment unit 

operation, it still contains a large amount of nutrients that can contaminate surface waters 

and ground water. Because a feedlot lagoon water does not usually contain serious toxic 

materials, it can be used to recycle nutrients to animal production facilities. High 

concentrations of ammonia-nitrogen in feedlot lagoon waters can be toxic to aquatic 

animals, but ammonia-nitrogen itself is a primary nitrogen source for aquatic plants. 

Previous work in ammonia-nitrogen removal using P. bohneri has been conducted in 

batch systems and semi-continuous flow systems (Pouliot et al, 1989; Talbot and de la 

Noue, 1988, 1993). However, a study of ammonia-nitrogen removal in a continuous-flow 

system has not been conducted. The principle objective of this research is to determine and 

model the level of ammonia-nitrogen removal from feedlot lagoon effluent with an algal 

culture in a continuous flow system (algae bioreactor) and to find the effects of baffles 

placed in the reactor on the growth of P. bohneri and on substrate removal. 

The results from this research will be used as an aid in design and operation of an 

algae-based, ammonia-nitrogen removal system. In order to attain the objective, the 

following sub-objectives were completed. 

1. To determine the appropriate concentration of algae in a bioreactor to achieve the 

highest removal efficiency for ammonia-nitrogen from the feedlot lagoon effluent. 

2. To determine the kinetic parameters for removing ammonia-nitrogen and to model 

the growth potential of algae from the food material. 

3. To determine the total mass of algae that can be produced per unit volume of food 

applied. 
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BACKGROUND AND LITERATURE REVIEW 

Beneficial Use of Algae 

The global net biomass production by photosynthesis is about 2*10*^ kg (4.4*10^* lb) 

of organic matter per year (Soeder, 1986). The biomass energy stored by photosynthesis is 

ten times as much as the world's total annual use of energy (Soeder, 1986). However, 

there are many portions of photosynthetic biomass that human beings rarely utilize as a 

direct sources of energy. One of these under utilized energy sources is algae. The 

production of the photosynthetic biomass composed by algae is 40 percent of total global 

net biomass production per year (Round, 1981). 

From prehistoric times, algae have been utilized by humans as a food source in several 

areas. Many countries in Asia such as Mongolia, China, Burma, Thailand, Vietnam, India, 

and Japan have used algae produced both in sea water and freshwater (Johnston, 1970). 

The English have collected and eaten raw, or cooked, a blue-green alga (Johnston, 1970). 

Approximately 20 kinds of sea water algae are currently favorite food sources for the 

Japanese (Soeder, 1986). From the 1960's, the Japanese companies have researched the 

mass production of freshwater microalgae such as Chlorella and Spirulina. Japanese, 

Israeli, and Taiwanese people have also produced and manufactured commercial products 

of algae for health foods (Soeder, 1986). 

As available food and energy sources for human beings, algae have advantages and 

disadvantages when cultivated manually (Buriew, 1953) as shown in Table 3.1. High 

operating cost requirements have been one of the main disadvantages of cultivating algae 

on a commercial scale. Tamiya (1957) found that the production of 1000 kg (2203 lb) of 

dry Chlorella meal would cost about $520 (US). This price could not compete with 

inexpensive proteinaceous plant materials such as soybeans. Even though Japan and 

Taiwan had commercial success in the production oi Chlorella in the 1960's after western 

countries accepted Chlorella products as health food items, the production of pure 



Table 3.1. Advantages and disadvantages of algae as a usable food and energy 
source. 

Advantages Disadvantages 

Higher protein yields than higher plants Comparatively high investments 

No useless parts of the biomass: no leaves. Costliness of the pure CO2 or organics 
stems or root (acetate, glucose) required 

Independence of soil quality; no competition Demand for chemicals as sources of 
with agriculture for land mineral nutrients 

Daily harvest of regrown biomass Danger of accumulation of 
environmental pollution 

Source: rewritten from Buriew, 1953. 
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microalgal meal is still a cost-consuming process compared to the production of protein 

material from terrestrial based plants (Litchfield, 1983). 

Algal Oxidation Pond Svstem 

The utilization of algal culture in an oxidation pond system was developed by Oswald 

and his group in the early 1950's. He was interested microalgae roles and applied their 

photosynthetic ability to wastewater treatment. An oxidation pond utilizes a relatively long 

detention time to treat wastewater by dilution and surface aeration (Oswald and Gotaas, 

1955). Oswald and Gotaas (1955) explained that photosynthesis by algae in waste 

treatment played an important role to supply oxygen for bacteria which oxidize organic 

matter. Products of aerobic bacterial oxidation of organic matter are CO2, NH3, and H2O 

that are the principal nutrients for algal photosynthesis. This symbiotic relationship 

between algae and bacteria in a wastewater treatment system is shown in Figure 3.1. 

Oswald (1990) elaborated the high-rate algal pond as a part of an advanced integrated 

wastewater pond system. He stated that the high-rate algal pond system could compete 

both reliably and economically with mechanical treatment systems of equal capacity. Also, 

this advanced integrated wastewater treatment system can eliminate sludge disposal, 

minimize power use, and require less land than conventional pond systems. According to 

Oswald (1990), the high-rate algal pond system involves a facultative pond with 

fermentation pits, a raceway type high-rate pond, algae settling pond, and a maturation 

pond. As an example of this type, the Saint Helena ponding system had BOD removal of 

97.2 % and nitrogen removal of 92 % (Oswald et al, 1970). 

There are several difficulties in maintaining a biologically steady state condition in a 

high rate algal pond system due to species dominance of algae and the diurnal fluctuations 

in O2 and pH (Abeliovich, 1986). Also, invasions of grazers makes it difficuh to operate a 

steady state algal pond system (Groeneweg etal, 1980). Abeliovich (1986) stated that 

dominance of algae species was dependent upon organic loading in an oxidation pond 

system. Euglena and Chlamydomonas species grow better with a relatively high organic 

loading; development of Scenedesmus, Chlorella, and Micractinium species occur in 


