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ASYMPTOTIC PROPERTIES OF ESTIMATORS FOR
AUTOREGRESSIVE MODELS WITH ERRORS IN

VARIABLES

BY KAMAL C. CHANDA

Texas Tech University

� 4Let X , t g Z be an observable strictly stationary sequence of ran-t
� 4 Ž . � 4dom variables and let X s U q « , where U is an AR p and « is at t t t t

� 4strictly stationary sequence representing errors of measurement in X ,t
� 4 � 4with E « s 0. Under some broad assumptions on « we establish the1 t

consistency properties as well as the rates of convergence for the standard
estimators for the autoregressive parameters computed from a set of
modified Yule]Walker equations.

1. Introduction. Data analysis of models with errors in variables started
historically with the investigation of relations between statistical variables
when all or some of these variables are subject to errors of measurement. A

Ž .somewhat exhaustive bibliography on this subject appears in Anderson 1984 .
The treatment of time series models with errors in variables, however, is of
recent origin. Regressions for time series models with errors in measurement

Ž . Ž . Ž .have been discussed by Hannan 1963 , Moran 1971 and Robinson 1986 .
Identifiability problems for such models appear in Anderson and Deistler
Ž . Ž . Ž . Ž .1984 , Maravall 1979 , Nowak 1985 and Solo 1986 . Estimation of an

Ž .error in variable autoregressive model is due to Trognon 1989 . However, so
far, to the best of this author’s knowledge, no systematic attempt has been
made to analyze data which are derived from general finite parameter linear
or nonlinear models and are, themselves, subject to errors in measurement.

Ž .The present paper deals with autoregressive AR models which have
Ž .errors in variables and is an extension of the results in Chanda 1994 in the

sense that the probability models for the errors of measurement are treated
here in a nonparametric manner.

2. Estimation of parameters in errors-in-variable AR models. Let
� 4X , t g Z be an observable strictly stationary sequence of random variablest
Ž .rv and let

2.1 X s U q « , f B U y m s h ,Ž . Ž . Ž .t t t t t

� 4where U ; t g Z is an AR sequence of unobservables, m is a finite constant,t
� 4« is a strictly stationary sequence representing errors in measurement int
� 4 � 4 Ž .X , h is a sequence of independent and identically distributed iid rv’st t
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Ž . Ž 2 . 2 � 4 � 4with E h s 0 and E h s s and « , h are mutually independent1 1 h t t
Ž . p jsequences. We assume that the roots of f j s 1 y Ý f j all lie outsidejs1 j

Ž .the unit circle. We assume that E « s 0 and from now on we use X in1 t
place of X y m throughout this paper. Our main objective is to estimate thet

� 4parameter f , . . . , f from a given set of data X , 1 F t F n . If m is1 p t
Ž .unknown, we estimate it by the sample mean X. Write g s E X X ,n t tqn

Ž . Ž . Ž . Ž .g U s E U U and g « s E « « , n G 0.n t tqn n t tqn

Ž .2.1. The AR 1 model. Consider at first the case p s 1. We write f s f1
Ž < < . � 4 < Ž . < n0 - f - 1 . Assume that « is a linear process such that g « F M dt n j
Ž . < < Žn G 0 , for some finite constants M ) 0 and 0 - d - f - 1. In particular,

� 4 .this condition holds if « is, itself, a certain type of ARMA process. Nowt
w < <x Ž . < < < <choose k s g log nrlog f , where g g y1r2, 0 and g ) log f r2 log d .

nyk nykŽ .Set g s Ý X X r n and C s Ý X z y a rn, where z s h q «ˆk ts1 t t q k k ts1 t tqk k t t t
Ž . Ž . Ž .y f« and a s E X z s g « y fg « , and definety1 k t tqk k ky1

ˆ2.2 f s g rg .Ž . ˆ ˆk kq1 k

1r2 < <Now note that n g ª `, k ª `, but krn ª 0 as n ª `. Therefore, wek
can write

1r2 ˆ 1r2 1r22.3 n g f y f f n C q n a r T q 1 ,Ž . Ž .Ž .Ž .k kq1 kq1 k

Ž .where T s g y g rg . Corollarly 2.1 that follows will imply thatˆk k k k
1r2 2 2 2 `Ž . Ž .LL n C ª NN 0, s , where s s g s q Ý g g andkq1 0 h ssy` s s

g s E « y f« « y f«Ž . Ž .s t ty1 tqs tqsy1

s g « 1 q f 2 y f g « q g « .Ž . Ž . Ž .Ž .Ž .s sq1 sy1

Ž . Ž 1r2Ž .. Ž ` 2 .By Theorem 2.1 below we have that LL n g y g ª NN 0,Ý g .ˆk k ssy` s
Also, it is easy to see that n1r2a ª 0 as n ª `. Therefore, as n ª `,kq1

1r2 ˆ 2< <2.4 LL n g f y f ª NN 0, sŽ . Ž .Ž .ž /k k

and hence
y1k1r2 2 2ˆ< <2.49 LL n f 1 y f f y f ª NN 0, s .Ž . Ž .Ž . Ž .ž /k

1r2 < < Ž1q2 g .r2 < <Note that n g ; n . Naturally we should choose g to be as smallk
as possible. For example, if f s 0.5 and d s 0.25, then y0.5 - g - y0.25. If

1r2 < < 0.249we choose g s y0.251, then n g ; n .k
One other possibility exists. Suppose k is chosen such that k ª `, krn ª 0,

1r2 < < Ž . Ž . Ž . Ž .n a ª `, but g « rg U ª 0 and g « rg U ª 0 as n ª `. Thenkq1 kq1 k k k
Ž .one can show quite easily from 2.3 that

ˆ< 5 <2.5 g ra f y f ª 1Ž . k kq1 k

� 4 Ž .in probability as n ª `. For example, if « is, itself, an AR 1 process,t
� 4 Ž . Ž 2 .« y c« s n , where n is a sequence of iid rv’s with E n s 0, 0 - E nt ty1 t t 1 1

< < < < Ž . w < <x- `, and 0 - c - f - 1, then 2.5 holds if we choose k s g log nrlog c
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k ˆŽ . < <with g g y1r2, 0 . In fact, one can then show that Dt f y f ª 1 ink
< <probability, for some finite positive constant D and t s frc ) 1.

Ž .2.2. The AR p model p G 2. For the general case p G 2, the estimators
ˆ ˆf , . . . , f of the AR parameters f , . . . , f are defined by the equationsk ,1 k , p 1 p

p

ˆ2.6 f g s g , k q 1 F n F k q p ,Ž . ˆÝ k , j nyj n
js1

where we choose k such that k ª `, but krn ª 0 as n ª `. If, now, we set
ˆ 1r2 ˆŽ . Ž .D s n f y f , 1 F j F p, then 2.6 reduces, in matrix form, toj k , j j

ˆ ˆ2.69 G D s C ,Ž . k , p k

where

Tˆ ˆ ˆD s D , . . . D ,1 p

Ĝ s g , 1 F i , j F p ,ˆk , p kqiyj

TC s C , . . . , C ,k kq1 kqp

1r2 1r2C s n C q n a n y n rn q R ,Ž .n n n n ,n
nyn

C s X z y a rn,Ž .Ýn t tqn n
ts1

a s E X z , k q 1 F n F k q p ,Ž .n t tqn

p

z s h q « y f «Ýt t t j tyj
js1

and

R s O ny1r2 .Ž .Žn ,n p

We now assume that the following conditions hold.
p Ž y1 .1. The roots j , . . . , j of j f j are all distinct and if we denote the root1 p

< < < <with the smallest modulus by j , then j is real and 0 - j - j ,p p p j
1 F j F p y 1.
� 4 ` � 42. « is a linear process, « s Ý c d , where d is a sequence of iidt t jsy` j tyj t

Ž . Ž 2 .rv’s with E d s 0 and 0 - E d - `.1 1
� 4 < Ž . n <3. c is such that g « rj ª 0, for every finite j, whenever n ª `.j nqj p

REMARK 1. The asymptotic normality result of Theorem 2.2 below will
Ž .hold although in substantially different forms even when the roots of

p Ž y1 .j f j are not all distinct. However, the mathematical details are some-
what complicated and hence are withheld from this report.



K. C. CHANDA426

1r2 < Ž . <Note that by conditions 1]3 we can choose k such that k ª `, n g Un
1r2 < Ž . < Žª ` and n g « ª 0 as n ª 0, for k q 1 F n F k q p the arguments aren

. Ž . p Ž .similar to those for the case p s 1 . Since a s g « y Ý f g « , itn n js1 j nyj
follows that n1r2a ª 0 as n ª `, k q 1 F n F k q p.n

We now prove the following theorem.

` ` � 4THEOREM 2.1. Let U s Ý b h and « s Ý c n , where ht jsy` j tyj t jsy` j tyj t
� 4 Ž . Ž 2 . 2and n are independent sequences of iid rv’s with E h s 0, E h s s ,t 1 1 h

Ž . Ž 2 . 2 Ž 4. Ž 4. ` < <E n s 0, E n s s , 0 - s , s - `, E h - `, E n - `, Ý j b - `1 1 n h n 1 1 jsy` j
` < <and Ý jc - `. Assume that k ª `, but krn ª 0 as n ª `. Then forjsy` j

1r2Ž .any finite integer l G 1, n g y g , 1 F j F l have, asymptotically, asˆkq j kqj
Ž .n ª `, a l q 1 -variate normal distribution with mean vector zero and

w xcovariance matrix L s l , wherei j

`

2.7 l s g g , 1 F j F l.Ž . Ýi j s sqiyj
ssy`

Ž .PROOF. Theorem 2.1. in Chanda 1993 proves the result for the case
when « s 0. Routine extension of arguments similar to those in the theoremt

Ž .in Chanda 1993 will establish the result of Theorem 2.1 in this paper. I

COROLLARY 2.1. Let the conditions of Theorem 2.1 hold and let C be asn

Ž . T w xdefined in 2.69 , with C s C , . . . , C . Thenk kq1 kqp

2.8 LL n1r2C ª NN 0, L* ,Ž . Ž .Ž .k p

2 ` pw x Ž .where L* s l * , l *ss g qÝ g g and g sÝ f*f*g « ,p i j i j h iyj ssy` s sqjyi l t ,ss0 t s lqtys
l s 0," 1, . . . .

PROOF. Note that as n ª `,

nyn nyn
1r2 1r2 1r2n C s X z ya rn s X f B X ya rnŽ . Ž .Ž .Ý Ýn t tqn n t tqn n

ts1 ts1
p

U1r2, n f* g y g , f s yf , 1 F j F p , f s 1,Ž .ˆÝ t nyt nyt j j 0
ts0

and
p p

n Cov C , C s n f*f* Cov g , g ª f*f*lˆ ˆŽ . Ž .Ý Ýkq i kqj t s kqiyt kqjys t s iyt , jys
t ,ss0 t ,ss0

`

s Ýf*f* g g as n ª `,Ýt s m mqiytyjqs
msy`

which together with Theorem 2.1 proves Corollary 2.1. I



ESTIMATORS FOR AR MODELS 427

Ž .We conclude from Corollary 2.1 and the relation 2.69 that

2.9 LL C ª NN 0, L*Ž . Ž .Ž .k p

as n ª `.
1r2 < < kypq1 ŽNow choose k such that k ª ` and n j ª ` as n ª `. Sincep

˜ ˆ< < .0 - j - 1, such a choice is always possible. Define G s G y G andp k , p k , p k , p
w xG s g , 1 F i, j F p, and note that since condition 1 holds, we cank , p kqiyj

write g s Ýk A j n, where A , . . . , A are nonzero constants and A is real.n js1 j j 1 p p
Also by conditions 2 and 3, Theorem 2.1 and the choice of k above, it follows

˜ kypq1that G rj ª 0 as n ª `. Therefore,k , p p P

kypq1 ˆy1 kypq1 y12.10 p lim A j G s lim A j G ,Ž . p p k , p p p k , p
nª` nª`

Ž .provided that the limit on the right side of 2.10 exists. We can now prove the
following theorem.

THEOREM 2.2. Assume that conditions 1]3 above hold. Choose k such that
1r2 < kypq1 <k ª ` and n j ª ` as n ª `. Thenp

1r2 kypq1 ˆ T< <2.11 LL n A j f y f ª NN 0, Q L*QŽ . Ž . Ž .ž /p p k k p p p

as n ª `, where

Q s dy2 H ,p p p

H s p pTJ , 1 F j F p ,j j j p

p p
T pymw xp s c ,c , . . . , c , j c s j y j ,Ž .Ý Łj 0, j 1, j py1, j my1, j u

us1ms1
u/j

p

d s j y j ,Ž .Łj j u
us1
u/j

0 0 ??? 0 1
0 0 ??? 1 0
..J s .p ...
1 0 ??? 0 0

Ž .and L* is as defined in 2.8 .p

Ž . Ž . Ž . w Ž .xPROOF. Note that G s G U q G « , where G U s g Uk , p k , p k , p k , p kqiyj

Ž . w Ž .x w lymqpy1 x Ž . Ž .kypq1and G « s g « . Set G s j , b s A rA j rjk , p kqiyj j j j j p j p
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T w py1 x Tand u s 1, j , . . . , j , 1 F j F p. Then it is easy to see that G s u u Jj j j j j j p
Ž . kypq1 pand G U s A j Ý b G and since condition 3 holds,k , p p p js1 j j

y1p
kypq1 y1 kypq1A j G s b G q G « rA jŽ .Ýp p k , p j j k , p p pž /

js1
2.12Ž . y1p

f b GÝ j jž /
js1

as n ª `, provided, of course, Ý p b G is nonsingular. Again, sincejs1 j j

p p
T pymu J p s j c s j y j s 0Ž .Ý Łi p j i my1, j i u

us1ms1
u/j

whenever i / j and s d , if i s j, it follows easily that G H s 0, if 1 F i / ji i j
F p, and G H s d C , where C s u pTJ , 1 F i F p. Hencei i i i i i i p

p p
y12.13 b G b H s M ,Ž . Ý Ýj j j j p

js1 js1

where M s Ý p d C . Now note that M a s 0 implies that C Ý p d C a sp is1 i i p j is1 i i
0, 1 F j F p. Also C C s 0 whenever 1 F i / j F p and C2 s d C , 1 F i F p.i j i i i
Since d / 0, 1 F i F p, it follows immediately that C a s 0, 1 F i F p.i i
Therefore, a s 0 and M and hence Ý p b G are nonsingular.p is1 i i

Now set Q s lim Ý p b G y1. Then since by1 ª 0 as n ª `, 1 F iŽ .p nª` is1 i i i
F p y 1, and b s 1, we conclude thatp

2.14 Q s H My1 .Ž . p p p

w x w xWrite L s u , . . . , u and L* s J p , . . . , J p . Note the H u sp 1 p p p 1 p p j i
p pTJ u s 0 whenever 1 F i / j F p. Therefore, M u s G H u s d2 u andj u p i p i i i i i i

2.15 M L s L D ,Ž . p p p p

w 2 2 xwhere D s diag d , . . . , d . Similar arguments lead top 1 p

2.16 MT L* s L*D .Ž . p p p p

Ž . Ž .Relations 2.15 and 2.16 imply that
p

T2.17 M s g u p J ,Ž . Ýp j j j p
js1

2 w Ž .where g s d rd s d see Chapter 1c, 3.14 in Rao 1973 and note thatj j j j
T x Ž .u J p s 0, if i / j, and s d , if i s j, 1 F i, j F p . From 2.17 we have thati p j i

H M s p pTJ Ý p d u pTJ s d2 H and hencep p p p p js1 j j j p p p

2.18 Q s H My1 s dy2 H .Ž . p p p p p
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kypq1ˆ Ž .Now set D* s A j D . Then we conclude from 2.69 and the commentsp p
kypq1 y1ˆŽ .that follow 2.69 that D* f A j G C as n ª `. If, now, we usep p k , p k

Ž . Ž . Ž . Ž .2.9 , 2.10 , 2.12 , 2.18 and Corollary 2.1, we immediately obtain the result
Ž . Ž T .2.11 of Theorem 2.2. It is also interesting to note that rank Q L*Q sp p p

Ž .rank Q s 1. Ip

p Ž y1 .REMARK 2. If the roots of j f j do not satisfy condition 1 the result of
Theorem 2.2 will not hold. In order to understand the kind of result that may
be obtained, in general, we consider the case p s 2 and discuss two situa-

Ž . Ž .tions: a the roots j , j are both complex and b the two roots are real and1 2
Ž .equal to j . For a we can show by direct calculation that1

k 2ˆ< <A j D f cos a q ku r2 sin u CŽ .Ž .1 1 1 kq1

2y cos a q k y 1 u r2 t sin u CŽ .Ž .Ž . kq2

and
k 2ˆ< <A j D f cos a q ku r2 sin u CŽ .Ž .1 1 2 kq2

2y t cos a q k q 1 u r2 sin u C , t s j .Ž .Ž .Ž . kq1 1

ˆwhich clearly indicates that no asymptotic distribution is possible for f andk ,1
ˆ Ž .f . On the other hand, for b routine and direct methods show that ifk ,2

X < n <condition 2 holds, if we replace condition 3 by 3 : ng rj ª 0, for everynqj 1
k1r2finite j as n ª ` and choose k such that k ª ` and n j rk ª ` as1

n ª `, then

1r2 kq1 ˆ< <2.19 LL n A j rk f y f ª NN 0, SŽ . Ž .Ž .ž /1 1 k k

T Ž .as n ª `, where S s Q*L*Q* , L* is as defined in 2.8 for p s 2,2 2 2 2
j y11 2 2 2Ž .Q* s , A s s r 1 q f and f s yf r4.22 1 h 2 2 1yj j1 1
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