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ABSTRACT

The utility scale of wind turbines has increageuin a few kilowatts to a few megawatts

in the past four decades. One of the primary objectives of energy projects is to maximize
their production at a minimum cost over a long operational life. In the current energy
market, the wind energy industry directly competes with-remrewable sourcesich as

natural gas and codlo gain a sustainable competitive advantage @ssential for the

wind projects to maximize their equipment reliability while minimizing the total

operating expenses.

Typically, wind energy projects and the turbines asighed to operate for 20 years.
However, components such as gearboxes, blades and generators start failing early in their
operational life. One of the primary reason for this premature failure is the unpredictable
nature of the incoming wind and the capending component loads. This research

utilizes a hubmounted conically scanning continuous wave Lidar integrated within the
measurement and control system of the turbine to proactively pitch the turbine blades. A
representative 5MW turbine is used tolsma the impact of an anticipatory turbine

control strategy on the component fatigue life. Furthermore, three blade pitch controllers
are modeled and simulated using NREL FAST for evaluating their operational
effectiveness in reducing the structural loddw.ough this analysis, it is observed that a
proactive blade pitch controller significantly reduces the blade root fatigue damage in
addition to reducing the pitch actuator loads. However, this reduction of component loads

comes at a cost of lost energpguction.

Wind energy projects are capital intensive and adding a Lidar per turbine increases the
total cost considerably. Thus, for understanding the overall effectiveness of such an
approach, it is crucial to evaluate the financial impacts usinga-haked controller in
addition to technical impacts. For this research, a comprehensive economic analysis tool
is modeled to configure, compare, analyze, and evaluate the financial feasibility of wind
projects. The investment attractiveness of a basedmaively controlled project is

compared to that of two Liddrased projects. In the first case, the reduction of
Vi
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component fatigue damage from a Lidesed control is used to increase the operational
life of the project. Whereas, in the second caserdtoe diameter of the turbine mounted
with a Lidar is increased proportionally to the reduced loads while keeping the

operational life constant at 20 years.

For the boundary conditions and assumptions in this research, it is observed that a Lidar
basecc ontrol l er offers the potential to incre
could outweigh the increased capital costs. It is seen that for a wind farm with lower

annual average wind speeds, it would be more profitable to utilize theladad

controller to increase the rotor diameter; whereas for wind sites with higher annual

average wind speeds a longer operational life resulting from-based control would

offer higher financial benefits. Thus, this research demonstrates a process to model,

analyze and compare wind energy projects both from a technical and economic

standpoint.

viii
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CHAPTER 1
INTRODUCTION

1. Project Definition

Industrialized nations have produced electricity usingmemewable resources such as

coal and natural gas for over a century now. Over this period, the operational efficiencies
of producing electricity through these nm@newable resources have improved

significantly. In addition, a variety of new technological innovations and discoveries in

converting the chemical energy in fossil fuels to electricity have been made.

One of the primary reasons that humans decided to explore the renewable sources to
produce electricity was to overcome some of the serious disadvantages of using

conventional fossil fuels. These disadvantages include:

1 Limited availability

1 Environmentapollution and degradation

As a renewable resource, wind has come a long way since the first wind turbine was
developed to generate electricity in 1987 by Charles F. BRighrel depicts an
approximate position that the wind industry holds today in terms of a typical industrial
life cycle. Specifically, the onshore wind industry is approaching its maturity as it still

continues to grow rapidly and innovate efficient operatiamgthods.

One of the primary objectives of the energy industry, renewable as well asnmewable

is to maximize the energy production for a minimum cost. The onshore wind industry in
its early stages followed this objective by increasing the size and powerafting

individual turbines. However, in the past decade, transportation of the turbine
components as well as transmission of electricity to the load centers have proved to be a

limiting factor in making these onshore turbines bigger.
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These limitations led ta paradigm shift in the industry, and forced the manufacturers
(OEMs) and developers to improve upon the overall operational efficiencies of the
turbine rather than increasing its size. For the current onshore utility scale, the turbine
capacity ranges fra 1.6 to 3.0 megawatt, and their rotorrdéter is limited to less than

120 meters. Thus, to achieve the aforementioned industry objective within the stated size
limitations, one of the primary challenges ahead of the wind industry is its turbine

reliability.

The most critical and failure prone turbine components such as, blades, gearboxes and
generators fail primarily due to structural fatigue damage. This research utilizes blade
fatigue as a representative mecchmni sm for

analyzes the impact of reducing fatigue loads on turbine reliability and operation.
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Figure 1 - Industry life cycle
Mo st modern wind turbines utilize bl adeobs

methods for efficienand effective operation. As the industry progressed over the period
2
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of years, turbines started pitching the blades individually instead of the conventional
collective mechanisms to reduce cyclic and the once per revolution (1P) load components
(Bossanyi2003). However, even with such sophisticated individual blade pitch control,

the turbines continue to fail, significantly because of their inherent reactive operational

and control strategy.

Conventional wind turbines typically utilize a reactive constcategy for their

operations. That is, the turbine has no information about a wind front as it approaches and

fl ows past the turbine. Once the front com
control system reacts to the state changes causeé pgsling front. This reactive

methodology increases structural fatigue and reduces the overall operational efficiency.
Figure2 illustrates the schematic of a conventional three bladed horizontal axis turbine.

One method that the wind industry is researching and testing to overcome these

shortcomings is to have advance information of approaching wind fronts, so as to
proactivelyd eci de upon the turbineds control acti
measurements of an approaching wind front, the control system can decide the

appropriate pitch trajectory for individual blades prior to the arrival of the gust. This

research modg, analyzes and evaluates the technical and economic impacts of utilizing a
proactive control strategy for individually pitching the turbine blades.

2. Project Scope and Methodology
This research is divided into two broad phases:

1 Technical impacts

1 Financialfeasibility and Economic impacts
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Figure 2 - Conventional three-bladed wind turbine

The first phase analyzes and quantifies the technical impacts of using a proactive turbine
control strategy. A variety of modern sophisticated instruments such as Radar, Lidar and
Sodar are available today for measuring and characterizing wind statistars @f the

turbine. This work utilizes Lidar data within the measurement and control systam of
turbineto minimize structural fatigue loads on the blades in a stochastic wind

environment as illustrated Figure3.

As the wind front approaches the turbine, it is assumed that the Lidar mounted on the hub
accurately and effectively characterizes its statistical properties and provides this
informaion to the turbine controller prior to the arrival of the front. Upon receiving
information from the Lidar, and knowing the current operational state of the turbine, the

pitch controller proactively estimates the pitch trajectories for individual blades.
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Figure 3 - Conventional three-bladed turbine with a hub-mounted Lidar

For this analysis a generic 5SMW variaisigeed wind turbine, the corresponding wind

data and a Lidar unit is modeled using NRé#veloped tools such as FA&md

TurbSim. Furthermore, the turbine responses for three different pitch controllers are
simulated, analyzed and compared. The response is described in terms of damage
equivalent loads (DELSs), annual energy output (AEP) and the corresponding pitch
activity. The analysis showed that proactive pitching of blades using advanced wind
measurements could have a significant effect on the fatigue life of the turbine structure.
As a result, a reduction of about 10% in the blemt# flapwise bending moment DELSs is

estimated.

Even though there are technical advantages of using wind remote sensing to reduce the
structural loads and associated fatigue damage, the addition of a Lidar is a capital
intensive investment. For a farm operating with such proactively cadraltbines,
significant capital must be allocated for Lidars upfront, before commissioning the project.
Therefore, before making such an investment, it is important to financially analyze

5
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whether incorporation of a Lidgrerturbine to reduce structuratfgue is attractive.

Thus, the second phase of this reseavetuates thefinancial impacts of installing a
hub-mounted Lidar for reducing the fatigue loads. An extensivdgroa caskHlow

model is developed for this purpo&¥oject financing and govement incentives play a

vital role in profitability of a wind farm. The third phase of this research analyzes the
impacts of project financing characteristics and incentives such as Production Tax Credits

(PTC) on such a proactively controlled wind projec

3. Dissertation Layout

The document is laid out in 5 chapters. Eeeondchapter, literatureReview, elaborates
on the current state of the turbines along with their operational and control
methodologies. In addition, this chapter discusses the neeficiivef proactive blade
pitch control for minimizing turbine loads and increasing operational efficiencies.
Furthermore, it elaborates on the need for a thorough financial feasibility analysis for

such Lidar controlled turbines.

Thethird chapter, Technal Research Methodology arResults, lays out the research

step by step as it was done and discusses the first phase of this research. A comparison of
three different turbine pitch controllers is made from a technical standpoint. The primary
parameters usefor evaluating and comparing turbine controller are the blade root fatigue
loads, annual energy produced and the change in pitch activity. Furthermore a thorough

analysis and comparison of the turbine response is done in this chapter.

Thefourth chapte, Economic Rsearch Methodology afResults, elaborates upon the
second and the third phase of the research, listed in the previous section. In this chapter,
the pro forma based economic tool is modeled and its results are discussed. Moreover, it
summaries and analyzes the economic impacts of utilizing a Lidar for proactively

controlling the turbine as discussed in the previous two chapters.
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Finally, chapter fiveConclusios andRecommendationsummarizes this research and
providesinsights on the current outcomes of this research and possible improvements for

future.
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CHAPTER 2
LITERATURE REVIEW

Conventional wind turbines operate using a reactive operational approach as seen in the
previous chapter. This reactive operationa
control and the structural response relative to the wind front as it passggitithe

turbine. Subsequently, this |l ag in turbine
turbine components due to extreme and fatigue loads. Wind energy researchers and
engineers have been addressing this failure mode since the past decptimizing the

turbine control algorithms for reducing structural loddgecent times, there has been a
significantgrowth in research studies on proactive turbine control and the corresponding
impacts. A potential solution that the industry is tryiagmplement is to utilize a wind

remote sensing Lidar for proactively pitching the turbine blades. This chapter discusses

and summarizes the current state of research and technology from the available literature

on effective turbine load contr@ndthe correspondingvind farm economics

1. Effect of Incoming Wind Pattern on Turbine Loading

Wind turbines are subject to a wide rangeeterministic and stochasstructuralloads.
Deterministic parameters, such as gravity and wind shear, alonthegtochastic
asymmetricalvind flow across the rotaignificantlyaffectsthe loading patteron the
turbinestructure In addition, due tehe variableandshortterm stochastic nature of
gusts loads on the turbines are highly varialdlaus, thevind turbine structure and its
componentgre prone to fatigue failure. Furthermdoecause ofheeconomic and
structural constraints, critical components suctugsneblades are built using lighter
and flexiblecompositematerialshat are susceptidlto material fatiguerherefore
fatigueis one of the primary criterignat should be considered during the design phase of
the turbineto maximize itsoperational lifetimgSutherland, 1999Moreover, leforethe
turbinesare commissioned and operatdgey mustbe certified by organizations like

DNV-GL, and IntertekOneimportantcriterion of testing a turbine for certification is its
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effective operational fatigue life. Thus, itisrequickdi r i ng t he t urfdri neods

the turbne manufacturerto identify the sources of fatigue loads and their significance.

Figure4 illustrates the variation of the wind speed across the rotor plane dagital

wind speed shear. Similarly, the wind speed varies horizontally, across the rotor. This
deterministic variation of wind causes a s
loading.In addition to these wind speed variations, the gravitatiamaitial and the

operational loads produce alternate tensile and compressive stress cycles along length of
the blade in the flapwise as well as lead lag direction as shokigune5. Subsequently,

theout of planeand the irplane bending moments on the turbine blades incrementally

i mpact the bladeb6bs fatigue properties and
every cycle. Over period oftime as the structural damage gets accumuldtethg the
operational life, the blade structure fails due to fatigue. The blade structure sustains the
maximum amplitudes of both the outméineas well as leathg bending momentt its

root. Therefore, a turbine blade is prone to fatigue failure especially at its root with the

out of plane bending moments being the primary cause of its failure.

Wind is stochastic in nature and thus, varies significantly across the rotor plne a

blows past the turbine. That is, each of the blades could potentially see different wind
characteristics relative to the other two as it rotates. This effect can lead to an asymmetric
rotor loading, especially for larger wind turbines placed in higirgulent wind
conditions.Thus, in addition to the aforementioned deterministic factors, turbulent winds
and the corresponding asymmetrical loading pattern on the rotor can significantly affect
the both the fatigue and extremely load characteristidsedfurbine structure (Verheij et

al., 1992).

Mouzakis et al. (1999)seda multiple regressiomodelto identify and evaluate the
effect of incoming wind characteristics an
structural fatigue loading. Fanalysis measurements from 110KW, threebladed,

stallcontrolledWincon110xt turbinewere used. Thre40-m meteorological towensere
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placedat adistance of 1.5 rotor diametdis theundisturbedvind measurements as seen
in Figure6. In addition, the turbine was equipped with full bridge strain gauges to
measure structural loadirmg the blades, drive train and the towgsing these
measuremenislamage equivalent loadSKL) were estimatefbr a variety of structural
loads.A Damage equivalent load (DEL) is a single, constant amplitude load that
produces structural damage equivalent to the loading gweri@d(Sutherlaad, 1999).
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Mouzakis et al. (1999)bserved that the fluctuations in wind represented by its standard
deviatiors and thus, the turbulenbavethe maximum influence on thigapwise blade
rootbending moment DELs. Manuel el al. (2003) observed similar results while

analyzing the impact of wind inflow characteristics on the turbine fatigue I8astady

experiment similar to Mouzakis el al. (1999) was conducted on a Micron 65/18M turbine

by Sutterland (2002) to analyze the effect of wind inflow characteristics on the fatigue

performance of turbine structures using a multivamagression modeSutherland

11
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(2002) observed that in addition to the turbulence, factors such as the vertical component
of the wind speed and the atmospheric stability play a significant role in influencing the
fatigue loadsRiziotis et al. (2000), Kelley et al. (2005) and Sim el al. (2009) observed
similar impacts of the atmospheric stability and the turbulent inflowdidons on the

turbinebéds fatigue | oading.

Moreover, these detrimental effects of turbulence and the other aforementioned wind
characteristics on the turbine loads could be further amplified in a wind farm setting. That
is, a turbine operating ia wakeof another turbine encounters highly turbulent winds
comparison to the one operating in an undisturbed wind environment and thus sustains
significantly higher structural fatigue loads. Thomsen et al. (1999) observed that the
turbulence in a wind turbineake could increase the fatigue loads by as high as 15% on
the turbine operating in that wakéigure7 shows a sample picture of wind turbines

operatng ina wake.

Figure 7 - Wind turbines operating in a wake (Hasager etal, 2013)

12
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Mouzakis et al. (1999) further analyzed the effect of the wind characteristics on the blade
root flapwise bending moment DELSs for varying slopes of tiNecirves. The slope of

an SN curve represents various component materials as stated in the intexhatio
electratechnical commission (IEC) standards. For instance, slopes of 3, 6 and 10
represent steel, aluminum and composite blade material respectively (Sutherland, 1999).
It was observethat the influence of the deterministic variables sudheseanwind

speed shear exponent artldeinclinationof wind inflow decreases when the slope
increases, whereas the effect of stochastic variables increases withimgcségee.In

other words, stochastic variables have a higher effect on materials suchpasites

thatare usedor blades than other materials such as stée&is one of the reasons that a
turbine bladevas useds a representative component to analyze the impact of various
control strategies on the turbineds struct

2. Wind Turbine Fatigue Loading and Turbine Control

In the previousectionit was observed that turbulent winds and atmospheric stability are
the primary factors that influence the fatigue loading on the turbine structure. This section
summarizes the methodgies that wind turbine designers utilize for efficient turbine

operations and control to mitigate the fatigue loads.

2.1.Wind Turbine Control

Figure8 illustrates a typical power curve for a modern horizontal axis turlinets »x

axis is the mean wind speed while thexys represents the delivered electric power
output.As seen, the power cuni®usuallycompartmentalized in four Regions of turbine
operation. In Region Jthe operational and control objective is to maximize the
aerodynamic efficiency and thus the power captured by the turbine (Wright et al., 2008).
The blade pitch angles are kept constant at a fixed full power angle throughout this
Region. Atthe onset of Region lIbs the wind speedpproaches its rated valube

turbine control moves from a variable speed control to the pitch controlled operation. In

this Region of operation, the operational and control objective of the tusdioe i
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maintain a constant level of rated power for the minimum level of structural loads
(Wright et al., 2008)Thus, as the wind speed increases from rated to thaututhe

bl adebs pitch angl e i s -powear(neadl degre@ feathert |
(90 degree) to achieve the aforementioned objectiMescover,atthe onset of Region
[, the turbine may experience power fluctuations belowadnwe its rated capacity.
This Region, which lies between the designated Regions Il and Khawn as the
Region Il %.. Since most of the pitch control action occurs in Regi@ndllinRegion |l

% of the power curve, ihwill be the focus othisresearch.

Until the late nineties, turbine control Region Il of the power curve was primarily
used to limit the power output and to reduce the impact of extreme loads. Hawever,
addition to reducinghe extreme loadsmodern turbine designensve to focus on

minimizing the fatigue damage induced the lowamplitude load cycles.

Region II: Power V3, Region lll: Power = Prated,
P (V) Variable-Speed Operation, Pitch Angle 8 moving to 90 deg
e Pitch Angle 8 =0to 1 deg (Decreasing Cp, Curves, Values)
(Full Power Angle, Max Cp)
F,ratec:!_ ______ b X : J '
3 : : E
- : ' :
8 : : \ Region Il %2 .
[ — ] ] :
o= : ; :
33 1 ; n .\
o _o : . !
o & ' ' ;
= : : -
H L 1 !
(& 1 1 :
2 : :
w : :
: | : | | | |
0 | ! | T I T
0 1 S 10 T 15 20 25 30
Wind Speed V (m/s) T
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(3-4mls) I Rated WS (24 - 27 m/s)
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Figure 8 - Wind turbine power curve (Courtesy: Dr. Jamie Chapman)
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A conventional horizontal axis wind turbine uses the generator torque contvaléey

the rotor speed proportional to thedisturbed wind speead Region Il of the power

curve. Whereas in Region Wipon reaching the rated wind spetetivokes theblade

pitch controllerHowever, in Region Il %2, where the mean wind speeds are fluctuating
above and below rated, it would beneficial to activate the turbine pitch controller
before the turbine actually reaches its rated wind speed to avoid rotor over IGading.
improve upon the energy captuiieis important to decouple the two controllers aage
only one of the two actevat anygiven instanceBossany,j 2000).Bossanyi2003)
suggested that this could be achieved by having both the generator torque and the blade
pitch controller active all the time with only one of the two in an operational mode at a
given state. That jsn Region II, both the generator torque and pitch controllers are
active, but the pitch controller remaisaturatedand only the torque controller operates
the turbine and vice versa. However, as the turbine approaches Region Il ¥z both the
controllers an constructively interfere to optimize the loads as well as the captured

energy Bossanyj 2003).

2.2.Individual Blade Pitch Control

The wind turbine structure is subjected to wide variation of aerodynamic loads due to
deterministic effects like wind spestiear. Every blade as its sweeps the rotor sustains
these loads fluctuations once per rotation (1P). Whereas, the stationary components of the
turbine such as the tower and the nacelle experience these loads three times per rotation
(3P) along with its hamonics namely, 6P, 9P, 12P and so on. The stationary components
do not typically sustain the 1P harmonics as illustrated by Bossanyi (2005). However,
with the increasing size of modern rotors and the stochastic nature of wind, conditions
faced by each tumbe blade significantly differ from the other. That igthie turbine

encounters an incoming gusthich affecs a portion of the rotoithe possibility of the

gust structure changing its characteristics are high as one of the blades moves away and
anothe moves towards it. In this case, the turbine structure and its stationary components

would sustain the 1P loads. Hence, instead of conventional collective pitching of turbine
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blades, modern turbine designer utilize individual blade pitching to reduce such

asymmetrical loads and the corresponding structural fatBpssanyj 2000).

The first generation individual blade pitch controllers were azimuth based cyclic blade
pitch controllers that tried to mitigate the deterministic loads caused by factorassuch

wind shear. However, as described by Walter et al. (2009), wind shear and the
corresponding loads across the rotor can vary significantly with the local atmospheric
conditions. To address this drawbaClaselitz et al(1997) analyzed the use of bladet

strain measurements to reduce the asymmetrical rotor loads (1P) through individual blade
pitch control. Strain measurements from the blade root represent the load levels on each
blade and help in mitigating the aforementioned asymmetric loads whemwitka the

measurement and control system of the turbine.

Bossanyi (2003) used the strain measurements to minimize the structural fatigue loads
with two different individual blade pitch controllersamely, the multivariable Linear
QuadratieGaussianl(QG) and the proportional integral (PI) controller. Through this
analysis, it was observed that using the blade root strain measurements for individual
blade pitch control significant reduction in the 1P rotor loads are achie¥éguire9 and
Figure10. Bossanyi (2005) enhanced this individuatpitontroller to reduce the 3P
loads on the stationary components sucthagowerin addition to the 1P rotor loads.
Furthermore, Hand et al. (2004) demonstrated that individual blade pitch control could
also be used to mitigate the fatigue loads by ashnas 30% relative to the conventional
P1 controller operating in the path of vortices in a stable atmospheric boundary layer.
Thus, it is seen through the aforementioned studies that using individual blade pitch

controller, significant reduction of theynmetric rotor loads could be achieved.

In addition to the 1P loads due to asymmetric wind loading, the turbine may also sustain
rotor i mbalance and static moments due to
profiles, mass distribution as well as aabéy pitch angle setting errors. In addition,

environmental factors such as dust and snow accumulation can further add to the rotor
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imbalance. Kanev et al. (2009) demonstrated that individual blade pitch controller could

also be used to mitigate the aformtioned asymmetric rotor loads, thus, further

reducing the structural fatigue loads.
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Figure 917 Comparison of load spectra for various controller (Bossanyi, 2003)
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Figure 10 - Reduction of fatigue loads for various controllers (Bossanyi, 2003)

One of the control strategies that turbine designers implement to reduce the fatigue loads
is activating the individual pitch controller in Region Il ¥2 before the turbine reaches its
rated power. This not only helps in reducing the maximum thrust loads that a rotor
sustains but also help in mitigating the structural fatigue due to the fluctuations of wind
speeds above and below rated. However, by pitching the blades early in Regitmell 2,
turbine loses the energy that it could have capture instead. Johnson et al. (2012)
investigated this tradeff and proposed a new control strategy to balance the turbine
fatigue loads withihe totalannual energy produced (AEP). The fatigue loadsAdE®

for two turbines were simulated and anal yz
Research 600 kW Turbine (CART) and the reference/ tMrbine (Jonkman et al.,

2009. Moreover, the results were then compared with the field tests on the CART
Turbine.Johnson et al. (2012) observed that the proposediloéohg algorithm (LLA)

for turbine control reduced the blade root flapwise bending moment DELs by 3.2% and
5-9% for the CART and the referencel®/ turbine (Jonkman et al., 20Q)9espectively.

Furthemore, Johnson et al. (2012) also pointed out that as a result of an aggressive
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