2021-11-162021-11-162017Hu, R., Zhu, Y., Wei, J., Chen, J., Shi, H., Shen, G., and Zhang, H. (2017) Overexpression of PP2A-C5 that encodes the catalytic subunit 5 of protein phosphatase 2A in Arabidopsis confers better root and shoot development under salt conditions. Plant, Cell & Environment, 40: 150– 164. doi: 10.1111/pce.12837.https://doi.org/10.1111/pce.12837https://hdl.handle.net/2346/88289© 2016 The Authors Plant, Cell & Environment Published by John Wiley & Sons Ltd. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.Protein phosphatase 2A (PP2A) is an enzyme consisting of three subunits: a scaffolding A subunit, a regulatory B subunit and a catalytic C subunit. PP2As were shown to play diverse roles in eukaryotes. In this study, the function of the Arabidopsis PP2A-C5 gene that encodes the catalytic subunit 5 of PP2A was studied using both loss-of-function and gain-of-function analyses. Loss-of-function mutant pp2a-c5-1 displayed more impaired growth during root and shoot development, whereas overexpression of PP2A-C5 conferred better root and shoot growth under different salt treatments, indicating that PP2A-C5 plays an important role in plant growth under salt conditions. Double knockout mutants of pp2a-c5-1 and salt overly sensitive (sos) mutants sos1-1, sos2-2 or sos3-1 showed additive sensitivity to NaCl, indicating that PP2A-C5 functions in a pathway different from the SOS signalling pathway. Using yeast two-hybrid analysis, four vacuolar membrane chloride channel (CLC) proteins, AtCLCa, AtCLCb, AtCLCc and AtCLCg, were found to interact with PP2A-C5. Moreover, overexpression of AtCLCc leads to increased salt tolerance and Cl− accumulation in transgenic Arabidopsis plants. These data indicate that PP2A-C5-mediated better growth under salt conditions might involve up-regulation of CLC activities on vacuolar membranes and that PP2A-C5 could be used for improving salt tolerance in crops.engChloride ChannelSalt SignallingSalt ToleranceOverexpression of PP2A-C5 that encodes the catalytic subunit 5 of protein phosphatase 2A in Arabidopsis confers better root and shoot development under salt conditionsArticle