Synthesis, growth mechanism and optical properties of YBO3-based LEDs phosphors

Date

2014-12

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

A family of monodisperse YBO3: Eu3+ 3D microstructure with nine morphologies were firstly synthesized under hydrothermal conditions. Different microstructures were controllably obtained through adjusting the molar ratio of Y: B (Yttrium: Boron) and solvent. Photoluminescence (PL) of nine samples were investigated and demonstrated that under the excitation of 254 and 363 nm honeycomb-like YBO3: Eu3+ spheres had the highest Red/Orange ratio as potential red phosphor for applications, such as PDPs (plasma display panels) and LEDs (light emitting diodes). Subsequently, the morphology of YBO3: Eu3+ is further controlled by changing the borate starting material and pH values. Moreover, related photoluminescence of YBO3: Eu3+ with various morphologies was compared. There is the graduate increase of luminescence intensity of Eu3+ on annealing the YBO3: Eu3+ microflowers at 400, 600, and 800 °C. The growth process of the YBO3 sparse and dense flowers was explored based on the time-dependent experiments and the results showed that the growth mechanism follows an in-situ growth through an initial nucleating, localized self-assembly, and Ostwald ripening process rather than self-assembly process as reported previously. Photoluminescence of white LEDs phosphors YBO3: Tb3+, Eu3+ was systematically studied demonstrating that under the excitation of 365 nm ultraviolet (UV) light. Tunable emission by varying the relative doping ratios were demonstrated, and eventually YBO3: Tb3+ (12.5%), Eu3+ (2.5%) exhibits a white light. It includes three emissions: a blue band attributed to self-trapped exciton, a green band due to the Tb3+ transition of 5D4 −7Fj (j = 6, 5, 4, 3), and a red band due to the Eu3+ transition of 5D0 −7Fj (j = 0, 1, 2, 3, 4). Energy transfers from host YBO3 to Tb3+, and Eu3+ and Tb3+ to Eu3+, as well as tunable emission by varying the relative doping ratios were identified through experimental strategies. At last, the combination of blue emission from self-trapped exciton with green and red emissions from activators was firstly used to fabricate white light emitting diodes by coating YBO3: Tb3+ (12.5%), Eu3+ (2.5%) phosphors on the commercial UVLED. Corresponding CIE coordinate, electroluminescence, color temperature, luminous efficiency, etc. were measured for the assessment of application.

Description

Rights

Rights Availability

Unrestricted.

Keywords

Rare earth, Photoluminescence, Energy transfer

Citation