Overexpression of the rice gene OsSIZ1 in Arabidopsis improves drought-, heat-, and salt-tolerance simultaneously

Abstract

Sumoylation is one of the post translational modifications, which affects cellular processes in plants through conjugation of small ubiquitin like modifier (SUMO) to target substrate proteins. Response to various abiotic environmental stresses is one of the major cellular functions regulated by SUMO conjugation. SIZ1 is a SUMO E3 ligase, facilitating a vital step in the sumoylation pathway. In this report, it is demonstrated that over-expression of the rice gene OsSIZ1 in Arabidopsis leads to increased tolerance to multiple abiotic stresses. For example, OsSIZ1-overexpressing plants exhibited enhanced tolerance to salt, drought, and heat stresses, and generated greater seed yields under a variety of stress conditions. Furthermore, OsSIZ1-overexpressing plants were able to exclude sodium ions more efficiently when grown in saline soils and accumulate higher potassium ions as compared to wild-type plants. Further analysis revealed that OsSIZ1-overexpressing plants expressed higher transcript levels of P5CS, a gene involved in the biosynthesis of proline, under both salt and drought stress conditions. Therefore, proline here is acting as an osmoprotectant to alleviate damages caused by drought and salt stresses. These results demonstrate that the rice gene OsSIZ1 has a great potential to be used for improving crop’s tolerance to several abiotic stresses.

Description

© 2018 Mishra et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. cc-by

Rights

Availability

Keywords

Citation

Mishra, N., Srivastava, A.P., Esmaeili, N., Hu, W., & Shen, G.. 2018. Overexpression of the rice gene OsSIZ1 in Arabidopsis improves drought-, heat-, and salt-tolerance simultaneously. PLoS ONE, 13(8). https://doi.org/10.1371/journal.pone.0201716

Collections