Comparison of acid-detergent lignin, alkaline-peroxide lignin, and acid-detergent insoluble ash as internal markers for predicting fecal output and digestibility by cattle offered bermudagrass hays of varying nutrient composition
Date
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Background: The potential for acid-detergent insoluble ash (ADIA), alkaline-peroxide lignin (APL), and acid-detergent lignin (ADL) to predict fecal output (FO) and dry matter digestibility (DMD) by cattle offered bermudagrass [Cynodon dactylon (L.) Pers.] hays of different qualities was evaluated. Eight ruminally cannulated cows (594 ± 35.5 kg) were allocated randomly to 4 hay diets: low (L), medium low (ML), medium high (MH), and high (H) crude protein (CP) concentration (79, 111, 131, and 164 g CP/kg on a DM basis, respectively). Diets were offered in 3 periods with 2 diet replicates per period and were rotated across cows between periods. Cows were individually fed 20 g DM/kg of body weight in equal feedings at 08:00 and 16:00 h for a 10-d adaptation followed by a 5-d total fecal collection. Actual DM intake (DMI), DMD, and FO were determined based on hay offered, ort, and feces excreted. These components were then analyzed for ADL, APL, and ADIA concentration to determine marker recovery and marker-based estimates of FO and DMD.Results: Forage DMI was affected by diet (P = 0.02), and DMI from MH and H was greater (P < 0.05) than from L. Apparent DMD tended (P = 0.08) to differ among diets while FO (P = 0.20) was not affected by diet treatments. Average ADL recovery (1.16) was greater (P < 0.05) than that of ADIA (1.03) and APL (1.06), but ADIA and APL did not differ (P = 0.42). Estimates of FO and DMD derived using APL and ADIA were not different (P ≥ 0.05) from total fecal collection while those using ADL differed (P < 0.05). There was no diet by marker interaction (P ≥ 0.22) for either FO or DMD.Conclusion: Acid-detergent insoluble ash and APL accurately predicted FO and DMD of cattle fed bermudagrass hay of varying nutrient composition. These internal markers may facilitate studies involving large numbers of animals and forages. Results from such studies may be used to develop improved equations to predict energy values of forages based on the relationship of dietary components to digestibility across a wide range of forages. © 2014 Kanani et al.; licensee BioMed Central Ltd.